Publikation: Weak Closedness of Monotone Sets of Lotteries and Robust Representation of Risk Preferences
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2013
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Sammelband
Publikationsstatus
Published
Erschienen in
BIAGINI, Francesca, ed. and others. Risk Measures and Attitudes. London: Springer, 2013, pp. 3-9. ISBN 978-1-4471-4925-5. Available under: doi: 10.1007/978-1-4471-4926-2_1
Zusammenfassung
We prove a closedness result for sets of lotteries that are monotone with respect to first-order stochastic dominance and show how it can be applied to obtain robust representations of risk preferences on lotteries with compact support.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
CHERIDITO, Patrick, Samuel DRAPEAU, Michael KUPPER, 2013. Weak Closedness of Monotone Sets of Lotteries and Robust Representation of Risk Preferences. In: BIAGINI, Francesca, ed. and others. Risk Measures and Attitudes. London: Springer, 2013, pp. 3-9. ISBN 978-1-4471-4925-5. Available under: doi: 10.1007/978-1-4471-4926-2_1BibTex
@incollection{Cheridito2013Close-40952, year={2013}, doi={10.1007/978-1-4471-4926-2_1}, title={Weak Closedness of Monotone Sets of Lotteries and Robust Representation of Risk Preferences}, isbn={978-1-4471-4925-5}, publisher={Springer}, address={London}, booktitle={Risk Measures and Attitudes}, pages={3--9}, editor={Biagini, Francesca}, author={Cheridito, Patrick and Drapeau, Samuel and Kupper, Michael} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40952"> <dc:contributor>Kupper, Michael</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-12-15T13:29:42Z</dcterms:available> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:title>Weak Closedness of Monotone Sets of Lotteries and Robust Representation of Risk Preferences</dcterms:title> <dc:creator>Drapeau, Samuel</dc:creator> <dc:creator>Cheridito, Patrick</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/40952"/> <dc:contributor>Drapeau, Samuel</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-12-15T13:29:42Z</dc:date> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:issued>2013</dcterms:issued> <dc:creator>Kupper, Michael</dc:creator> <dc:language>eng</dc:language> <dc:contributor>Cheridito, Patrick</dc:contributor> <dcterms:abstract xml:lang="eng">We prove a closedness result for sets of lotteries that are monotone with respect to first-order stochastic dominance and show how it can be applied to obtain robust representations of risk preferences on lotteries with compact support.</dcterms:abstract> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja