Publikation: Regression-Based Expected Shortfall Backtesting
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
This article introduces novel backtests for the risk measure Expected Shortfall (ES) following the testing idea of Mincer and Zarnowitz (1969). Estimating a regression model for the ES stand-alone is infeasible and thus, our tests are based on a joint regression model for the Value at Risk (VaR) and the ES, which allows for different test specifications. These ES backtests are the first which solely backtest the ES in the sense that they only require ES forecasts as input variables. As the tests are potentially subject to model misspecification, we provide asymptotic theory under misspecification for the underlying joint regression. We find that employing a misspecification robust covariance estimator substantially improves the tests’ performance. We compare our backtests to existing joint VaR and ES backtests and find that our tests outperform the existing alternatives throughout all considered simulations. In an empirical illustration, we apply our backtests to ES forecasts for 200 stocks of the S&P 500 index.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BAYER, Sebastian, Timo DIMITRIADIS, 2022. Regression-Based Expected Shortfall Backtesting. In: Journal of Financial Econometrics. Oxford University Press. 2022, 20(3), pp. 437-471. ISSN 1479-8409. eISSN 1479-8417. Available under: doi: 10.1093/jjfinec/nbaa013BibTex
@article{Bayer2022Regre-57838, year={2022}, doi={10.1093/jjfinec/nbaa013}, title={Regression-Based Expected Shortfall Backtesting}, number={3}, volume={20}, issn={1479-8409}, journal={Journal of Financial Econometrics}, pages={437--471}, author={Bayer, Sebastian and Dimitriadis, Timo} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/57838"> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:title>Regression-Based Expected Shortfall Backtesting</dcterms:title> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-06-23T13:57:04Z</dc:date> <dcterms:issued>2022</dcterms:issued> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57838/1/Bayer_2-s7q087by7m369.pdf"/> <dcterms:abstract xml:lang="eng">This article introduces novel backtests for the risk measure Expected Shortfall (ES) following the testing idea of Mincer and Zarnowitz (1969). Estimating a regression model for the ES stand-alone is infeasible and thus, our tests are based on a joint regression model for the Value at Risk (VaR) and the ES, which allows for different test specifications. These ES backtests are the first which solely backtest the ES in the sense that they only require ES forecasts as input variables. As the tests are potentially subject to model misspecification, we provide asymptotic theory under misspecification for the underlying joint regression. We find that employing a misspecification robust covariance estimator substantially improves the tests’ performance. We compare our backtests to existing joint VaR and ES backtests and find that our tests outperform the existing alternatives throughout all considered simulations. In an empirical illustration, we apply our backtests to ES forecasts for 200 stocks of the S&P 500 index.</dcterms:abstract> <dc:contributor>Dimitriadis, Timo</dc:contributor> <dc:creator>Bayer, Sebastian</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/57838"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:language>eng</dc:language> <dc:creator>Dimitriadis, Timo</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57838/1/Bayer_2-s7q087by7m369.pdf"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-06-23T13:57:04Z</dcterms:available> <dc:contributor>Bayer, Sebastian</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/> <dc:rights>terms-of-use</dc:rights> </rdf:Description> </rdf:RDF>