Publikation:

Canards in a bottleneck

Lade...
Vorschaubild

Dateien

Iuorio_2-s7bugxmzwh195.pdf
Iuorio_2-s7bugxmzwh195.pdfGröße: 2.58 MBDownloads: 13

Datum

2023

Autor:innen

Iuorio, Annalisa
Szmolyan, Peter
Wolfram, Marie-Therese

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Physica D: Nonlinear Phenomena. Elsevier. 2023, 451, 133768. ISSN 0167-2789. eISSN 1872-8022. Available under: doi: 10.1016/j.physd.2023.133768

Zusammenfassung

In this paper, we investigate the stationary profiles of a nonlinear Fokker–Planck equation with small diffusion and nonlinear inflow and outflow boundary conditions. We consider corridors with a bottleneck whose width has a unique global nondegenerate minimum in the interior. In the small diffusion limit, the profiles are obtained constructively by using methods from geometric singular perturbation theory (GSPT). We identify three main types of profiles corresponding to: (i) high density in the domain and a boundary layer at the entrance, (ii) low density in the domain and a boundary layer at the exit, and (iii) transitions from high density to low density inside the bottleneck with boundary layers at the entrance and exit. Interestingly, solutions of the last type involve canard solutions generated at the narrowest point of the bottleneck. We obtain a detailed bifurcation diagram of these solutions in terms of the inflow and outflow rates. The analytic results based on GSPT are further corroborated by computational experiments investigating corridors with bottlenecks of variable width.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690IUORIO, Annalisa, Gaspard JANKOWIAK, Peter SZMOLYAN, Marie-Therese WOLFRAM, 2023. Canards in a bottleneck. In: Physica D: Nonlinear Phenomena. Elsevier. 2023, 451, 133768. ISSN 0167-2789. eISSN 1872-8022. Available under: doi: 10.1016/j.physd.2023.133768
BibTex
@article{Iuorio2023Canar-69285,
  year={2023},
  doi={10.1016/j.physd.2023.133768},
  title={Canards in a bottleneck},
  volume={451},
  issn={0167-2789},
  journal={Physica D: Nonlinear Phenomena},
  author={Iuorio, Annalisa and Jankowiak, Gaspard and Szmolyan, Peter and Wolfram, Marie-Therese},
  note={Article Number: 133768}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/69285">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:language>eng</dc:language>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/69285/1/Iuorio_2-s7bugxmzwh195.pdf"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/69285/1/Iuorio_2-s7bugxmzwh195.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:abstract>In this paper, we investigate the stationary profiles of a nonlinear Fokker–Planck equation with small diffusion and nonlinear inflow and outflow boundary conditions. We consider corridors with a bottleneck whose width has a unique global nondegenerate minimum in the interior. In the small diffusion limit, the profiles are obtained constructively by using methods from geometric singular perturbation theory (GSPT). We identify three main types of profiles corresponding to: (i) high density in the domain and a boundary layer at the entrance, (ii) low density in the domain and a boundary layer at the exit, and (iii) transitions from high density to low density inside the bottleneck with boundary layers at the entrance and exit. Interestingly, solutions of the last type involve canard solutions generated at the narrowest point of the bottleneck. We obtain a detailed bifurcation diagram of these solutions in terms of the inflow and outflow rates. The analytic results based on GSPT are further corroborated by computational experiments investigating corridors with bottlenecks of variable width.</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/69285"/>
    <dc:contributor>Jankowiak, Gaspard</dc:contributor>
    <dc:contributor>Iuorio, Annalisa</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-02-09T07:12:14Z</dc:date>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-02-09T07:12:14Z</dcterms:available>
    <dc:creator>Szmolyan, Peter</dc:creator>
    <dcterms:title>Canards in a bottleneck</dcterms:title>
    <dc:contributor>Wolfram, Marie-Therese</dc:contributor>
    <dcterms:issued>2023</dcterms:issued>
    <dc:contributor>Szmolyan, Peter</dc:contributor>
    <dc:creator>Jankowiak, Gaspard</dc:creator>
    <dc:creator>Iuorio, Annalisa</dc:creator>
    <dc:creator>Wolfram, Marie-Therese</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt
Diese Publikation teilen