Publikation: Canards in a bottleneck
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In this paper, we investigate the stationary profiles of a nonlinear Fokker–Planck equation with small diffusion and nonlinear inflow and outflow boundary conditions. We consider corridors with a bottleneck whose width has a unique global nondegenerate minimum in the interior. In the small diffusion limit, the profiles are obtained constructively by using methods from geometric singular perturbation theory (GSPT). We identify three main types of profiles corresponding to: (i) high density in the domain and a boundary layer at the entrance, (ii) low density in the domain and a boundary layer at the exit, and (iii) transitions from high density to low density inside the bottleneck with boundary layers at the entrance and exit. Interestingly, solutions of the last type involve canard solutions generated at the narrowest point of the bottleneck. We obtain a detailed bifurcation diagram of these solutions in terms of the inflow and outflow rates. The analytic results based on GSPT are further corroborated by computational experiments investigating corridors with bottlenecks of variable width.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
IUORIO, Annalisa, Gaspard JANKOWIAK, Peter SZMOLYAN, Marie-Therese WOLFRAM, 2023. Canards in a bottleneck. In: Physica D: Nonlinear Phenomena. Elsevier. 2023, 451, 133768. ISSN 0167-2789. eISSN 1872-8022. Available under: doi: 10.1016/j.physd.2023.133768BibTex
@article{Iuorio2023Canar-69285, year={2023}, doi={10.1016/j.physd.2023.133768}, title={Canards in a bottleneck}, volume={451}, issn={0167-2789}, journal={Physica D: Nonlinear Phenomena}, author={Iuorio, Annalisa and Jankowiak, Gaspard and Szmolyan, Peter and Wolfram, Marie-Therese}, note={Article Number: 133768} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/69285"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dc:language>eng</dc:language> <dc:rights>Attribution 4.0 International</dc:rights> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/69285/1/Iuorio_2-s7bugxmzwh195.pdf"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/69285/1/Iuorio_2-s7bugxmzwh195.pdf"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:abstract>In this paper, we investigate the stationary profiles of a nonlinear Fokker–Planck equation with small diffusion and nonlinear inflow and outflow boundary conditions. We consider corridors with a bottleneck whose width has a unique global nondegenerate minimum in the interior. In the small diffusion limit, the profiles are obtained constructively by using methods from geometric singular perturbation theory (GSPT). We identify three main types of profiles corresponding to: (i) high density in the domain and a boundary layer at the entrance, (ii) low density in the domain and a boundary layer at the exit, and (iii) transitions from high density to low density inside the bottleneck with boundary layers at the entrance and exit. Interestingly, solutions of the last type involve canard solutions generated at the narrowest point of the bottleneck. We obtain a detailed bifurcation diagram of these solutions in terms of the inflow and outflow rates. The analytic results based on GSPT are further corroborated by computational experiments investigating corridors with bottlenecks of variable width.</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/69285"/> <dc:contributor>Jankowiak, Gaspard</dc:contributor> <dc:contributor>Iuorio, Annalisa</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-02-09T07:12:14Z</dc:date> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-02-09T07:12:14Z</dcterms:available> <dc:creator>Szmolyan, Peter</dc:creator> <dcterms:title>Canards in a bottleneck</dcterms:title> <dc:contributor>Wolfram, Marie-Therese</dc:contributor> <dcterms:issued>2023</dcterms:issued> <dc:contributor>Szmolyan, Peter</dc:contributor> <dc:creator>Jankowiak, Gaspard</dc:creator> <dc:creator>Iuorio, Annalisa</dc:creator> <dc:creator>Wolfram, Marie-Therese</dc:creator> </rdf:Description> </rdf:RDF>