Publikation:

Learning Fuzzy Models and Potential Outliers

Lade...
Vorschaubild

Dateien

Berthold_243700.pdf
Berthold_243700.pdfGröße: 4.83 MBDownloads: 462

Datum

2000

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Sammelband
Publikationsstatus
Published

Erschienen in

GIACOMO, , ed., Riccia RUDOLF KRUSE, ed., Hans-Joachim LENZ, ed.. Computational intelligence in data mining. Wien [u.a.]: Springer, 2000, pp. 111-126. International Centre for Mechanical Sciences : Courses and lectures. 408. ISBN 3-211-83326-9

Zusammenfassung

Outliers or distorted attributes very often severely interfere with data analysis algorithms that try to extract few meaningful rules. Most methods to deal with outliers try to completely ignore them. This can be potentially harmful since the very outlier that was ignored might have described a rare but still extremely interesting phenomena. In this paper we describe an approach that tries to build an interpretable model while still maintaining all the information in the data. This is achieved through a two stage process. A first phase builds an outlier-model for data points of low relevance, followed by a second stage which uses this model as filter and generates a simpler model, describing only examples with higher relevance, thus representing a more general concept. The outlier-model on the other hand may point out potential areas of interest to the user. Preliminary experiments indicate that the two models in fact have lower complexity and sometimes even offer superior performance.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BERTHOLD, Michael R., 2000. Learning Fuzzy Models and Potential Outliers. In: GIACOMO, , ed., Riccia RUDOLF KRUSE, ed., Hans-Joachim LENZ, ed.. Computational intelligence in data mining. Wien [u.a.]: Springer, 2000, pp. 111-126. International Centre for Mechanical Sciences : Courses and lectures. 408. ISBN 3-211-83326-9
BibTex
@incollection{Berthold2000Learn-24370,
  year={2000},
  title={Learning Fuzzy Models and Potential Outliers},
  number={408},
  isbn={3-211-83326-9},
  publisher={Springer},
  address={Wien [u.a.]},
  series={International Centre for Mechanical Sciences : Courses and lectures},
  booktitle={Computational intelligence in data mining},
  pages={111--126},
  editor={Giacomo and Rudolf Kruse, Riccia and Lenz, Hans-Joachim},
  author={Berthold, Michael R.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/24370">
    <dcterms:title>Learning Fuzzy Models and Potential Outliers</dcterms:title>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24370/2/Berthold_243700.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>2000</dcterms:issued>
    <dc:creator>Berthold, Michael R.</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:bibliographicCitation>Computational intelligence in data mining / Giacomo della Riccia, Rudolf Kruse, Hans-Joachim Lenz (eds.). - Wien [u.a.] : Springer, 2000. - S. 111-126. - (International Centre for Mechanical Sciences: Courses and lectures ; 408). - ISBN 3-211-83326-9</dcterms:bibliographicCitation>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-09-11T09:27:43Z</dc:date>
    <dc:language>eng</dc:language>
    <dcterms:abstract xml:lang="eng">Outliers or distorted attributes very often severely interfere with data analysis algorithms that try to extract few meaningful rules. Most methods to deal with outliers try to completely ignore them. This can be potentially harmful since the very outlier that was ignored might have described a rare but still extremely interesting phenomena. In this paper we describe an approach that tries to build an interpretable model while still maintaining all the information in the data. This is achieved through a two stage process. A first phase builds an outlier-model for data points of low relevance, followed by a second stage which uses this model as filter and generates a simpler model, describing only examples with higher relevance, thus representing a more general concept. The outlier-model on the other hand may point out potential areas of interest to the user. Preliminary experiments indicate that the two models in fact have lower complexity and sometimes even offer superior performance.</dcterms:abstract>
    <dc:contributor>Berthold, Michael R.</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24370/2/Berthold_243700.pdf"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/24370"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-09-11T09:27:43Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen