Publikation:

Who Watches (and Shares) What on YouTube? And When? : Using Twitter to Understand YouTube Viewership

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2014

Autor:innen

Abisheva, Adiya
Garimella, Venkata Rama Kiran
Weber, Ingmar

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

CARTERETTE, Ben, ed., Fernando DIAZ, ed.. WSDM '14 : Proceedings of the 7th ACM international conference on Web search and data mining. New York, NY: ACM, 2014, pp. 593-602. ISBN 978-1-4503-2351-2. Available under: doi: 10.1145/2556195.2566588

Zusammenfassung

By combining multiple social media datasets, it is possible to gain insight into each dataset that goes beyond what could be obtained with either individually. In this paper we combine user-centric data from Twitter with video-centric data from YouTube to build a rich picture of who watches and shares what on YouTube. We study 87K Twitter users, 5.6 million YouTube videos and 15 million video sharing events from user-, video- and sharing-event-centric perspectives. We show that features of Twitter users correlate with YouTube features and sharing-related features. For example, urban users are quicker to share than rural users. We find a superlinear relationship between initial Twitter shares and the final amounts of views. We discover that Twitter activity metrics play more role in video popularity than mere amount of followers. We also reveal the existence of correlated behavior concerning the time between video creation and sharing within certain timescales, showing the time onset for a coherent response, and the time limit after which collective responses are extremely unlikely. Response times depend on the category of the video, suggesting Twitter video sharing is highly dependent on the video content. To the best of our knowledge, this is the first large-scale study combining YouTube and Twitter data, and it reveals novel, detailed insights into who watches (and shares) what on YouTube, and when.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

WSDM 2014 : 7th ACM International Conference on Web Search and Data Mining, 24. Feb. 2014 - 28. Feb. 2014, New York, NY
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690ABISHEVA, Adiya, Venkata Rama Kiran GARIMELLA, David GARCIA, Ingmar WEBER, 2014. Who Watches (and Shares) What on YouTube? And When? : Using Twitter to Understand YouTube Viewership. WSDM 2014 : 7th ACM International Conference on Web Search and Data Mining. New York, NY, 24. Feb. 2014 - 28. Feb. 2014. In: CARTERETTE, Ben, ed., Fernando DIAZ, ed.. WSDM '14 : Proceedings of the 7th ACM international conference on Web search and data mining. New York, NY: ACM, 2014, pp. 593-602. ISBN 978-1-4503-2351-2. Available under: doi: 10.1145/2556195.2566588
BibTex
@inproceedings{Abisheva2014Watch-66311,
  year={2014},
  doi={10.1145/2556195.2566588},
  title={Who Watches (and Shares) What on YouTube? And When? : Using Twitter to Understand YouTube Viewership},
  isbn={978-1-4503-2351-2},
  publisher={ACM},
  address={New York, NY},
  booktitle={WSDM '14 : Proceedings of the 7th ACM international conference on Web search and data mining},
  pages={593--602},
  editor={Carterette, Ben and Diaz, Fernando},
  author={Abisheva, Adiya and Garimella, Venkata Rama Kiran and Garcia, David and Weber, Ingmar}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/66311">
    <dc:language>eng</dc:language>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Garimella, Venkata Rama Kiran</dc:creator>
    <dc:contributor>Garimella, Venkata Rama Kiran</dc:contributor>
    <dc:creator>Abisheva, Adiya</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>2014</dcterms:issued>
    <dcterms:title>Who Watches (and Shares) What on YouTube? And When? : Using Twitter to Understand YouTube Viewership</dcterms:title>
    <dc:creator>Garcia, David</dc:creator>
    <dc:creator>Weber, Ingmar</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-03-06T15:25:10Z</dcterms:available>
    <dc:contributor>Weber, Ingmar</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-03-06T15:25:10Z</dc:date>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dc:contributor>Garcia, David</dc:contributor>
    <dcterms:abstract>By combining multiple social media datasets, it is possible to gain insight into each dataset that goes beyond what could be obtained with either individually. In this paper we combine user-centric data from Twitter with video-centric data from YouTube to build a rich picture of who watches and shares what on YouTube. We study 87K Twitter users, 5.6 million YouTube videos and 15 million video sharing events from user-, video- and sharing-event-centric perspectives. We show that features of Twitter users correlate with YouTube features and sharing-related features. For example, urban users are quicker to share than rural users. We find a superlinear relationship between initial Twitter shares and the final amounts of views. We discover that Twitter activity metrics play more role in video popularity than mere amount of followers. We also reveal the existence of correlated behavior concerning the time between video creation and sharing within certain timescales, showing the time onset for a coherent response, and the time limit after which collective responses are extremely unlikely. Response times depend on the category of the video, suggesting Twitter video sharing is highly dependent on the video content. To the best of our knowledge, this is the first large-scale study combining YouTube and Twitter data, and it reveals novel, detailed insights into who watches (and shares) what on YouTube, and when.</dcterms:abstract>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/66311"/>
    <dc:contributor>Abisheva, Adiya</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen