Publikation: The Challenges of Algorithm-Based HR Decision-Making for Personal Integrity
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Organizations increasingly rely on algorithm-based HR decision-making to monitor their employees. This trend is reinforced by the technology industry claiming that its decision-making tools are efficient and objective, downplaying their potential biases. In our manuscript, we identify an important challenge arising from the efficiency-driven logic of algorithm-based HR decision-making, namely that it may shift the delicate balance between employees' personal integrity and compliance more in the direction of compliance. We suggest that critical data literacy, ethical awareness, the use of participatory design methods, and private regulatory regimes within civil society can help overcome these challenges. Our paper contributes to literature on workplace monitoring, critical data studies, personal integrity, and literature at the intersection between HR management and corporate responsibility.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
LEICHT-DEOBALD, Ulrich, Thorsten BUSCH, Christoph SCHANK, Antoinette WEIBEL, Simon SCHAFHEITLE, Isabelle WILDHABER, Gabriel KASPER, 2019. The Challenges of Algorithm-Based HR Decision-Making for Personal Integrity. In: Journal of Business Ethics. Springer. 2019, 160(2), pp. 377-392. ISSN 0167-4544. eISSN 1573-0697. Available under: doi: 10.1007/s10551-019-04204-wBibTex
@article{LeichtDeobald2019Chall-52922, year={2019}, doi={10.1007/s10551-019-04204-w}, title={The Challenges of Algorithm-Based HR Decision-Making for Personal Integrity}, number={2}, volume={160}, issn={0167-4544}, journal={Journal of Business Ethics}, pages={377--392}, author={Leicht-Deobald, Ulrich and Busch, Thorsten and Schank, Christoph and Weibel, Antoinette and Schafheitle, Simon and Wildhaber, Isabelle and Kasper, Gabriel} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52922"> <dc:contributor>Schank, Christoph</dc:contributor> <dcterms:abstract xml:lang="eng">Organizations increasingly rely on algorithm-based HR decision-making to monitor their employees. This trend is reinforced by the technology industry claiming that its decision-making tools are efficient and objective, downplaying their potential biases. In our manuscript, we identify an important challenge arising from the efficiency-driven logic of algorithm-based HR decision-making, namely that it may shift the delicate balance between employees' personal integrity and compliance more in the direction of compliance. We suggest that critical data literacy, ethical awareness, the use of participatory design methods, and private regulatory regimes within civil society can help overcome these challenges. Our paper contributes to literature on workplace monitoring, critical data studies, personal integrity, and literature at the intersection between HR management and corporate responsibility.</dcterms:abstract> <dc:creator>Kasper, Gabriel</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> <dc:contributor>Kasper, Gabriel</dc:contributor> <dcterms:issued>2019</dcterms:issued> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-02-19T09:14:51Z</dc:date> <dc:creator>Schank, Christoph</dc:creator> <dc:creator>Weibel, Antoinette</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-02-19T09:14:51Z</dcterms:available> <dc:contributor>Leicht-Deobald, Ulrich</dc:contributor> <dc:creator>Schafheitle, Simon</dc:creator> <dc:rights>Attribution 4.0 International</dc:rights> <dc:language>eng</dc:language> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/52922/1/Leicht-Deobald_2-ryz2uhhn4qf95.pdf"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/52922/1/Leicht-Deobald_2-ryz2uhhn4qf95.pdf"/> <dc:contributor>Wildhaber, Isabelle</dc:contributor> <dc:contributor>Schafheitle, Simon</dc:contributor> <dcterms:title>The Challenges of Algorithm-Based HR Decision-Making for Personal Integrity</dcterms:title> <dc:creator>Leicht-Deobald, Ulrich</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> <dc:contributor>Busch, Thorsten</dc:contributor> <dc:contributor>Weibel, Antoinette</dc:contributor> <dc:creator>Busch, Thorsten</dc:creator> <dc:creator>Wildhaber, Isabelle</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52922"/> </rdf:Description> </rdf:RDF>