Publikation: Automated Identification of Media Bias by Word Choice and Labeling in News Articles
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Media bias can strongly impact the individual and public perception of news events. One difficult-to-detect, yet powerful form of slanted news coverage is bias by word choice and labeling (WCL). Bias by WCL can occur when journalists refer to the same concept, yet use different terms, which results in different sentiments being sparked in the readers, such as the terms "economic migrants" vs. "refugees." We present an automated approach to identify bias by WCL that employs models and manual analysis approaches from the social sciences, a research domain in which media bias has been studied for decades. This paper makes three contributions. First, we present NewsWCL50, the first open evaluation dataset for the identification of bias by WCL consisting of 8,656 manual annotations in 50 news articles. Second, we propose a method capable of extracting instances of bias by WCL while outperforming state-of-the-art methods, such as coreference resolution, which currently cannot resolve very broadly defined or abstract coreferences used by journalists. We evaluate our method on the NewsWCL50 dataset, achieving an F1=45.7% compared to F1=29.8% achieved by the best performing state-of-the-art technique. Lastly, we present a prototype demonstrating the effectiveness of our approach in finding frames caused by bias by WCL.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
HAMBORG, Felix, Anastasia ZHUKOVA, Bela GIPP, 2019. Automated Identification of Media Bias by Word Choice and Labeling in News Articles. 2019 ACM/IEEE Joint Conference on Digital Libraries (JCDL). Urbana-Champaign, Illinois, 2. Juni 2019 - 6. Juni 2019. In: BONN, Maria, ed. and others. 2019 ACM/IEEE Joint Conference on Digital Libraries : JCDL 2019 : proceedings : 2-6 June 2019, Urbana-Champaign, Illinois. Piscataway, NJ: IEEE, 2019, pp. 196-205. ISBN 978-1-72811-547-4. Available under: doi: 10.1109/JCDL.2019.00036BibTex
@inproceedings{Hamborg2019-06Autom-50923, year={2019}, doi={10.1109/JCDL.2019.00036}, title={Automated Identification of Media Bias by Word Choice and Labeling in News Articles}, isbn={978-1-72811-547-4}, publisher={IEEE}, address={Piscataway, NJ}, booktitle={2019 ACM/IEEE Joint Conference on Digital Libraries : JCDL 2019 : proceedings : 2-6 June 2019, Urbana-Champaign, Illinois}, pages={196--205}, editor={Bonn, Maria}, author={Hamborg, Felix and Zhukova, Anastasia and Gipp, Bela} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/50923"> <dc:creator>Hamborg, Felix</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:abstract xml:lang="eng">Media bias can strongly impact the individual and public perception of news events. One difficult-to-detect, yet powerful form of slanted news coverage is bias by word choice and labeling (WCL). Bias by WCL can occur when journalists refer to the same concept, yet use different terms, which results in different sentiments being sparked in the readers, such as the terms "economic migrants" vs. "refugees." We present an automated approach to identify bias by WCL that employs models and manual analysis approaches from the social sciences, a research domain in which media bias has been studied for decades. This paper makes three contributions. First, we present NewsWCL50, the first open evaluation dataset for the identification of bias by WCL consisting of 8,656 manual annotations in 50 news articles. Second, we propose a method capable of extracting instances of bias by WCL while outperforming state-of-the-art methods, such as coreference resolution, which currently cannot resolve very broadly defined or abstract coreferences used by journalists. We evaluate our method on the NewsWCL50 dataset, achieving an F1=45.7% compared to F1=29.8% achieved by the best performing state-of-the-art technique. Lastly, we present a prototype demonstrating the effectiveness of our approach in finding frames caused by bias by WCL.</dcterms:abstract> <dc:contributor>Hamborg, Felix</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-21T12:10:21Z</dc:date> <dcterms:title>Automated Identification of Media Bias by Word Choice and Labeling in News Articles</dcterms:title> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-21T12:10:21Z</dcterms:available> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/50923"/> <dc:creator>Zhukova, Anastasia</dc:creator> <dc:contributor>Zhukova, Anastasia</dc:contributor> <dc:contributor>Gipp, Bela</dc:contributor> <dc:creator>Gipp, Bela</dc:creator> <dcterms:issued>2019-06</dcterms:issued> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>