History oblivious route recovery on road networks

Lade...
Vorschaubild
Dateien
Chondrogiannis_2-rpqssr5t06jg0.pdf
Chondrogiannis_2-rpqssr5t06jg0.pdfGröße: 5.88 MBDownloads: 28
Datum
2022
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Bookpart
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
RENZ, Matthias, ed., Mohamed SARWAT, ed.. SIGSPATIAL '22 : Proceedings of the 30th International Conference on Advances in Geographic Information Systems. New York: ACM, 2022, 44. ISBN 978-1-4503-9529-8. Available under: doi: 10.1145/3557915.3560979
Zusammenfassung

The availability of GPS sensors in vehicles has enabled the collection of trajectory data that can be utilized to improve the quality of location-based services. However, mostly due to privacy concerns, many data sets are published without containing entire trajectories but only the source location, the target location and the duration of recorded trips. In this paper, we study the problem of route recovery from trip data. In contrast to recent works that assume the availability of entire trajectories for past trips, we investigate methods for route recovery in the absence of such historical data, and we present methods for recovering the single most likely route that a vehicle has travelled. Furthermore, we introduce the region recovery problem that aims at determining a small region that is very likely to contain the traveled route. We also introduce region recovery methods for both single trips and trip groups. In a comprehensive experimental evaluation, we study the efficacy of our solutions for both the route and the region recovery problem. For the region recovery problem in particular, we demonstrate the pros and cons of each method along with the trade-off they offer between the size of the recovered region and the likelihood that the region contains the actual route.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
SIGSPATIAL '22: The 30th International Conference on Advances in Geographic Information Systems, 1. Nov. 2022 - 4. Nov. 2022, Seattle Washington
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690CHONDROGIANNIS, Theodoros, Johann BORNHOLDT, Panagiotis BOUROS, Michael GROSSNIKLAUS, 2022. History oblivious route recovery on road networks. SIGSPATIAL '22: The 30th International Conference on Advances in Geographic Information Systems. Seattle Washington, 1. Nov. 2022 - 4. Nov. 2022. In: RENZ, Matthias, ed., Mohamed SARWAT, ed.. SIGSPATIAL '22 : Proceedings of the 30th International Conference on Advances in Geographic Information Systems. New York: ACM, 2022, 44. ISBN 978-1-4503-9529-8. Available under: doi: 10.1145/3557915.3560979
BibTex
@inproceedings{Chondrogiannis2022Histo-59632,
  year={2022},
  doi={10.1145/3557915.3560979},
  title={History oblivious route recovery on road networks},
  isbn={978-1-4503-9529-8},
  publisher={ACM},
  address={New York},
  booktitle={SIGSPATIAL '22 : Proceedings of the 30th International Conference on Advances in Geographic Information Systems},
  editor={Renz, Matthias and Sarwat, Mohamed},
  author={Chondrogiannis, Theodoros and Bornholdt, Johann and Bouros, Panagiotis and Grossniklaus, Michael},
  note={Article Number: 44}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59632">
    <dc:creator>Bouros, Panagiotis</dc:creator>
    <dc:contributor>Bornholdt, Johann</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:issued>2022</dcterms:issued>
    <dc:contributor>Grossniklaus, Michael</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:abstract xml:lang="eng">The availability of GPS sensors in vehicles has enabled the collection of trajectory data that can be utilized to improve the quality of location-based services. However, mostly due to privacy concerns, many data sets are published without containing entire trajectories but only the source location, the target location and the duration of recorded trips. In this paper, we study the problem of route recovery from trip data. In contrast to recent works that assume the availability of entire trajectories for past trips, we investigate methods for route recovery in the absence of such historical data, and we present methods for recovering the single most likely route that a vehicle has travelled. Furthermore, we introduce the region recovery problem that aims at determining a small region that is very likely to contain the traveled route. We also introduce region recovery methods for both single trips and trip groups. In a comprehensive experimental evaluation, we study the efficacy of our solutions for both the route and the region recovery problem. For the region recovery problem in particular, we demonstrate the pros and cons of each method along with the trade-off they offer between the size of the recovered region and the likelihood that the region contains the actual route.</dcterms:abstract>
    <dc:contributor>Bouros, Panagiotis</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-04T13:37:59Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Chondrogiannis, Theodoros</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-04T13:37:59Z</dcterms:available>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59632/1/Chondrogiannis_2-rpqssr5t06jg0.pdf"/>
    <dc:creator>Bornholdt, Johann</dc:creator>
    <dc:creator>Chondrogiannis, Theodoros</dc:creator>
    <dc:creator>Grossniklaus, Michael</dc:creator>
    <dcterms:title>History oblivious route recovery on road networks</dcterms:title>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59632"/>
    <dc:rights>terms-of-use</dc:rights>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59632/1/Chondrogiannis_2-rpqssr5t06jg0.pdf"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen