Publikation: Classification and Clustering of arXiv Documents, Sections, and Abstracts, Comparing Encodings of Natural and Mathematical Language
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In this paper, we show how selecting and combining encodings of natural and mathematical language affect classification and clustering of documents with mathematical content. We demonstrate this by using sets of documents, sections, and abstracts from the arXiv preprint server that are labeled by their subject class (mathematics, computer science, physics, etc.) to compare different encodings of text and formulae and evaluate the performance and runtimes of selected classification and clustering algorithms. Our encodings achieve classification accuracies up to 82.8% and cluster purities up to 69.4% (number of clusters equals number of classes), and 99.9% (unspecified number of clusters) respectively. We observe a relatively low correlation between text and math similarity, which indicates the independence of text and formulae and motivates treating them as separate features of a document. The classification and clustering can be employed, e.g., for document search and recommendation. Furthermore, we show that the computer outperforms a human expert when classifying documents. Finally, we evaluate and discuss multi-label classification and formula semantification.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SCHARPF, Philipp, Moritz SCHUBOTZ, Abdou YOUSSEF, Felix HAMBORG, Norman MEUSCHKE, Bela GIPP, 2020. Classification and Clustering of arXiv Documents, Sections, and Abstracts, Comparing Encodings of Natural and Mathematical Language. JCDL '20. China (Virtual Event), 1. Aug. 2020 - 5. Aug. 2020. In: HUANG, Ruhua, ed. and others. Proceedings of the ACM/IEEE Joint Conference on Digital Libraries in 2020 (JCDL '20). New York: ACM, 2020, pp. 137-146. ISBN 978-1-4503-7585-6. Available under: doi: 10.1145/3383583.3398529BibTex
@inproceedings{Scharpf2020-05-22T06:16:32ZClass-51925, year={2020}, doi={10.1145/3383583.3398529}, title={Classification and Clustering of arXiv Documents, Sections, and Abstracts, Comparing Encodings of Natural and Mathematical Language}, isbn={978-1-4503-7585-6}, publisher={ACM}, address={New York}, booktitle={Proceedings of the ACM/IEEE Joint Conference on Digital Libraries in 2020 (JCDL '20)}, pages={137--146}, editor={Huang, Ruhua}, author={Scharpf, Philipp and Schubotz, Moritz and Youssef, Abdou and Hamborg, Felix and Meuschke, Norman and Gipp, Bela} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/51925"> <dc:contributor>Gipp, Bela</dc:contributor> <dcterms:abstract xml:lang="eng">In this paper, we show how selecting and combining encodings of natural and mathematical language affect classification and clustering of documents with mathematical content. We demonstrate this by using sets of documents, sections, and abstracts from the arXiv preprint server that are labeled by their subject class (mathematics, computer science, physics, etc.) to compare different encodings of text and formulae and evaluate the performance and runtimes of selected classification and clustering algorithms. Our encodings achieve classification accuracies up to 82.8% and cluster purities up to 69.4% (number of clusters equals number of classes), and 99.9% (unspecified number of clusters) respectively. We observe a relatively low correlation between text and math similarity, which indicates the independence of text and formulae and motivates treating them as separate features of a document. The classification and clustering can be employed, e.g., for document search and recommendation. Furthermore, we show that the computer outperforms a human expert when classifying documents. Finally, we evaluate and discuss multi-label classification and formula semantification.</dcterms:abstract> <dc:creator>Schubotz, Moritz</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:rights>terms-of-use</dc:rights> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Meuschke, Norman</dc:contributor> <dc:language>eng</dc:language> <dc:contributor>Youssef, Abdou</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-11-25T14:29:09Z</dcterms:available> <dc:creator>Gipp, Bela</dc:creator> <dc:creator>Scharpf, Philipp</dc:creator> <dc:contributor>Scharpf, Philipp</dc:contributor> <dcterms:issued>2020-05-22T06:16:32Z</dcterms:issued> <dc:creator>Hamborg, Felix</dc:creator> <dc:creator>Youssef, Abdou</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Hamborg, Felix</dc:contributor> <dc:creator>Meuschke, Norman</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/51925"/> <dcterms:title>Classification and Clustering of arXiv Documents, Sections, and Abstracts, Comparing Encodings of Natural and Mathematical Language</dcterms:title> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-11-25T14:29:09Z</dc:date> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Schubotz, Moritz</dc:contributor> </rdf:Description> </rdf:RDF>