Publikation: Well-posedness of a quasilinear hyperbolic-parabolic system arising in mathematical biology
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We study the existence of classical solutions of a taxis-diffusion-reaction model for tumour-induced blood vessel growth. The model in its basic form has been proposed by Chaplain and Stuart (IMA J. Appl. Med. Biol. (10), 1993) and consists of one equation for the endothelial cell-density and another one for the concentration of tumour angiogenesis factor (TAF). Here we consider the special and interesting case that endothelial cells are immobile in the absence of TAF, i.e. vanishing cell motility. In this case the mathematical structure of the model changes significantly (from parabolic type to a mixed hyperbolic-parabolic type) and existence of solutions is by no means clear. We present conditions on the initial and boundary data which guarantee local existence, uniqueness and positivity of classical solutions of the problem. Our approach is based on the method of characteristics and relies on known maximal L p and Hölder regularity results for the diffusion equation.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
GERISCH, Alf, Matthias KOTSCHOTE, Rico ZACHER, 2007. Well-posedness of a quasilinear hyperbolic-parabolic system arising in mathematical biology. In: Nonlinear Differential Equations and Applications NoDEA. 2007, 14(5-6), pp. 593-624. ISSN 1021-9722. eISSN 1420-9004. Available under: doi: 10.1007/s00030-007-5023-2BibTex
@article{Gerisch2007Wellp-25496, year={2007}, doi={10.1007/s00030-007-5023-2}, title={Well-posedness of a quasilinear hyperbolic-parabolic system arising in mathematical biology}, number={5-6}, volume={14}, issn={1021-9722}, journal={Nonlinear Differential Equations and Applications NoDEA}, pages={593--624}, author={Gerisch, Alf and Kotschote, Matthias and Zacher, Rico} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/25496"> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-12-18T08:13:07Z</dc:date> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/25496"/> <dc:rights>terms-of-use</dc:rights> <dcterms:bibliographicCitation>Nonlinear Differential Equations and Applications ; 14 (2007), 5-6. - S. 593-624</dcterms:bibliographicCitation> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:title>Well-posedness of a quasilinear hyperbolic-parabolic system arising in mathematical biology</dcterms:title> <dc:language>eng</dc:language> <dcterms:issued>2007</dcterms:issued> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Gerisch, Alf</dc:creator> <dc:creator>Zacher, Rico</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-12-18T08:13:07Z</dcterms:available> <dc:creator>Kotschote, Matthias</dc:creator> <dc:contributor>Kotschote, Matthias</dc:contributor> <dcterms:abstract xml:lang="eng">We study the existence of classical solutions of a taxis-diffusion-reaction model for tumour-induced blood vessel growth. The model in its basic form has been proposed by Chaplain and Stuart (IMA J. Appl. Med. Biol. (10), 1993) and consists of one equation for the endothelial cell-density and another one for the concentration of tumour angiogenesis factor (TAF). Here we consider the special and interesting case that endothelial cells are immobile in the absence of TAF, i.e. vanishing cell motility. In this case the mathematical structure of the model changes significantly (from parabolic type to a mixed hyperbolic-parabolic type) and existence of solutions is by no means clear. We present conditions on the initial and boundary data which guarantee local existence, uniqueness and positivity of classical solutions of the problem. Our approach is based on the method of characteristics and relies on known maximal L p and Hölder regularity results for the diffusion equation.</dcterms:abstract> <dc:contributor>Zacher, Rico</dc:contributor> <dc:contributor>Gerisch, Alf</dc:contributor> </rdf:Description> </rdf:RDF>