Exploratory Text Analysis using Lexical Episode Plots
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In this paper, we present Lexical Episode Plots, a novel automated text-mining and visual analytics approach for exploratory text analysis. In particular, we first describe an algorithm for automatically annotating text regions to examine prominent themes within natural language texts. The algorithm is based on lexical chaining to find spans of text in which the frequency of a term is significantly higher than its average in the document. In a second step we present an interactive visualization supporting the exploration and interpretation of Lexical Episodes. The visualization links higher-level thematic structures with content-level details. The methodological capabilities of our approach are illustrated by analyzing the televised US presidential election debates.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
GOLD, Valentin, Christian ROHRDANTZ, Mennatallah EL-ASSADY, 2015. Exploratory Text Analysis using Lexical Episode Plots. EuroVis : The EG/VGTC Conference on Visualization. Cagliari, Italy, 25. Mai 2015 - 29. Mai 2015. In: BERTINI, Enrico, ed., Jessie KENNEDY, ed., Enrico PUPPO, ed.. Eurographics Conference on Visualization (EuroVis) 2015 : Short Papers. The Eurographics Association, 2015, pp. 85-90. Available under: doi: 10.2312/eurovisshort.20151130BibTex
@inproceedings{Gold2015Explo-32053, year={2015}, doi={10.2312/eurovisshort.20151130}, title={Exploratory Text Analysis using Lexical Episode Plots}, url={https://diglib.eg.org/handle/10.2312/eurovisshort.20151130.085-089}, publisher={The Eurographics Association}, booktitle={Eurographics Conference on Visualization (EuroVis) 2015 : Short Papers}, pages={85--90}, editor={Bertini, Enrico and Kennedy, Jessie and Puppo, Enrico}, author={Gold, Valentin and Rohrdantz, Christian and El-Assady, Mennatallah} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/32053"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-11-04T12:29:34Z</dc:date> <dc:contributor>Rohrdantz, Christian</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-11-04T12:29:34Z</dcterms:available> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2015</dcterms:issued> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:title>Exploratory Text Analysis using Lexical Episode Plots</dcterms:title> <dc:contributor>Gold, Valentin</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Rohrdantz, Christian</dc:creator> <dc:creator>El-Assady, Mennatallah</dc:creator> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> <dcterms:abstract xml:lang="eng">In this paper, we present Lexical Episode Plots, a novel automated text-mining and visual analytics approach for exploratory text analysis. In particular, we first describe an algorithm for automatically annotating text regions to examine prominent themes within natural language texts. The algorithm is based on lexical chaining to find spans of text in which the frequency of a term is significantly higher than its average in the document. In a second step we present an interactive visualization supporting the exploration and interpretation of Lexical Episodes. The visualization links higher-level thematic structures with content-level details. The methodological capabilities of our approach are illustrated by analyzing the televised US presidential election debates.</dcterms:abstract> <dc:creator>Gold, Valentin</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/32053"/> <dc:contributor>El-Assady, Mennatallah</dc:contributor> </rdf:Description> </rdf:RDF>