An averaging principle for fast diffusions in domains separated by semi-permeable membranes

dc.contributor.authorBobrowski, Adam
dc.contributor.authorKazmierczak, Bogdan
dc.contributor.authorKunze, Markus
dc.date.accessioned2016-03-24T14:30:39Z
dc.date.available2016-03-24T14:30:39Z
dc.date.issued2016eng
dc.description.abstractWe prove an averaging principle which asserts convergence of diffusions on domains separated by semi-permeable membranes, when the speed of diffusion tends to infinity while the flux through the membranes remains constant. In the limit, points in each domain are lumped into a single state of a limit Markov chain. The limit chain's intensities are proportional to membranes' permeability and inversely proportional to the domains' sizes. Analytically, the limit is an example of a singular perturbation in which boundary and transmission conditions play a crucial role. This averaging principle is strongly motivated by recent signaling pathways models of mathematical biology, which are discussed in the final section of the paper.eng
dc.description.versionpublishedeng
dc.identifier.ppn462793575
dc.identifier.urihttps://kops.uni-konstanz.de/handle/123456789/33472.1
dc.language.isoengeng
dc.relation.ispartofseriesKonstanzer Schriften in Mathematikeng
dc.rightsterms-of-use
dc.rights.urihttps://rightsstatements.org/page/InC/1.0/
dc.subjectConvergence of sectorial forms and of semigroups of operators, diffusion processes, boundary and transmission conditions, Freidlin–Wentzell averaging princi- ple, singular perturbations, signaling pathways, kinase activity, intracellular calcium dynamics, neurotransmitters.eng
dc.subject.ddc510eng
dc.subject.msc47A07, 47D07, 60J70, 92C45
dc.titleAn averaging principle for fast diffusions in domains separated by semi-permeable membraneseng
dc.typeWORKINGPAPEReng
dspace.entity.typePublication
kops.bibliographicInfo.seriesNumber351eng
kops.description.openAccessopenaccessgreen
kops.flag.knbibliographytrue
kops.identifier.nbnurn:nbn:de:bsz:352-0-324467
temp.submission.doi
temp.submission.source
Dateien
Originalbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
Bobrowski_0-324467.pdf
Größe:
567.07 KB
Format:
Adobe Portable Document Format
Beschreibung:
Bobrowski_0-324467.pdf
Bobrowski_0-324467.pdfGröße: 567.07 KBDownloads: ?
Lizenzbündel
Gerade angezeigt 1 - 1 von 1
Vorschaubild nicht verfügbar
Name:
license.txt
Größe:
3.88 KB
Format:
Item-specific license agreed upon to submission
Beschreibung:
license.txt
license.txtGröße: 3.88 KBDownloads: 0

Versionsgeschichte

Gerade angezeigt 1 - 2 von 2
VersionDatumZusammenfassung
2017-05-15 13:07:34
1*
2016-03-24 14:30:39
* Ausgewählte Version