Publikation: Neural Puppeteer : Keypoint-Based Neural Rendering of Dynamic Shapes
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We introduce Neural Puppeteer, an efficient neural rendering pipeline for articulated shapes. By inverse rendering, we can predict 3D keypoints from multi-view 2D silhouettes alone, without requiring texture information. Furthermore, we can easily predict 3D keypoints of the same class of shapes with one and the same trained model and generalize more easily from training with synthetic data which we demonstrate by successfully applying zero-shot synthetic to real-world experiments. We demonstrate the flexibility of our method by fitting models to synthetic videos of different animals and a human, and achieve quantitative results which outperform our baselines. Our method uses 3D keypoints in conjunction with individual local feature vectors and a global latent code to allow for an efficient representation of time-varying and articulated shapes such as humans and animals. In contrast to previous work, we do not perform reconstruction in the 3D domain, but project the 3D features into 2D cameras and perform reconstruction of 2D RGB-D images from these projected features, which is significantly faster than volumetric rendering. Our synthetic dataset will be publicly available, to further develop the evolving field of animal pose and shape reconstruction.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
GIEBENHAIN, Simon, Urs WALDMANN, Ole JOHANNSEN, Bastian GOLDLÜCKE, 2023. Neural Puppeteer : Keypoint-Based Neural Rendering of Dynamic Shapes. 16th Asian Conference on Computer Vision (ACCV 2022). Macao, China, 4. Dez. 2022 - 8. Dez. 2022. In: WANG, Lei, ed., Juergen GALL, ed., Tat-Jun CHIN, ed., Imari SATO, ed., Rama CHELLAPPA, ed.. Computer Vision - ACCV 2022 : 16th Asian Conference on Computer Vision, Macao, China, December 4–8, 2022, Proceedings, Part IV. Cham: Springer, 2023, pp. 239-256. Lecture Notes in Computer Science. 13844. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-031-26315-6. Available under: doi: 10.1007/978-3-031-26316-3_15BibTex
@inproceedings{Giebenhain2023Neura-67349, year={2023}, doi={10.1007/978-3-031-26316-3_15}, title={Neural Puppeteer : Keypoint-Based Neural Rendering of Dynamic Shapes}, number={13844}, isbn={978-3-031-26315-6}, issn={0302-9743}, publisher={Springer}, address={Cham}, series={Lecture Notes in Computer Science}, booktitle={Computer Vision - ACCV 2022 : 16th Asian Conference on Computer Vision, Macao, China, December 4–8, 2022, Proceedings, Part IV}, pages={239--256}, editor={Wang, Lei and Gall, Juergen and Chin, Tat-Jun and Sato, Imari and Chellappa, Rama}, author={Giebenhain, Simon and Waldmann, Urs and Johannsen, Ole and Goldlücke, Bastian} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/67349"> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-07-11T06:46:23Z</dc:date> <dc:language>eng</dc:language> <dcterms:title>Neural Puppeteer : Keypoint-Based Neural Rendering of Dynamic Shapes</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Waldmann, Urs</dc:creator> <dc:creator>Johannsen, Ole</dc:creator> <dc:contributor>Giebenhain, Simon</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-07-11T06:46:23Z</dcterms:available> <dcterms:issued>2023</dcterms:issued> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/67349"/> <dcterms:abstract>We introduce Neural Puppeteer, an efficient neural rendering pipeline for articulated shapes. By inverse rendering, we can predict 3D keypoints from multi-view 2D silhouettes alone, without requiring texture information. Furthermore, we can easily predict 3D keypoints of the same class of shapes with one and the same trained model and generalize more easily from training with synthetic data which we demonstrate by successfully applying zero-shot synthetic to real-world experiments. We demonstrate the flexibility of our method by fitting models to synthetic videos of different animals and a human, and achieve quantitative results which outperform our baselines. Our method uses 3D keypoints in conjunction with individual local feature vectors and a global latent code to allow for an efficient representation of time-varying and articulated shapes such as humans and animals. In contrast to previous work, we do not perform reconstruction in the 3D domain, but project the 3D features into 2D cameras and perform reconstruction of 2D RGB-D images from these projected features, which is significantly faster than volumetric rendering. Our synthetic dataset will be publicly available, to further develop the evolving field of animal pose and shape reconstruction.</dcterms:abstract> <dc:contributor>Goldlücke, Bastian</dc:contributor> <dc:creator>Giebenhain, Simon</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Goldlücke, Bastian</dc:creator> <dc:contributor>Waldmann, Urs</dc:contributor> <dc:contributor>Johannsen, Ole</dc:contributor> </rdf:Description> </rdf:RDF>