Publikation:

Neural Puppeteer : Keypoint-Based Neural Rendering of Dynamic Shapes

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2023

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

WANG, Lei, ed., Juergen GALL, ed., Tat-Jun CHIN, ed., Imari SATO, ed., Rama CHELLAPPA, ed.. Computer Vision - ACCV 2022 : 16th Asian Conference on Computer Vision, Macao, China, December 4–8, 2022, Proceedings, Part IV. Cham: Springer, 2023, pp. 239-256. Lecture Notes in Computer Science. 13844. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-031-26315-6. Available under: doi: 10.1007/978-3-031-26316-3_15

Zusammenfassung

We introduce Neural Puppeteer, an efficient neural rendering pipeline for articulated shapes. By inverse rendering, we can predict 3D keypoints from multi-view 2D silhouettes alone, without requiring texture information. Furthermore, we can easily predict 3D keypoints of the same class of shapes with one and the same trained model and generalize more easily from training with synthetic data which we demonstrate by successfully applying zero-shot synthetic to real-world experiments. We demonstrate the flexibility of our method by fitting models to synthetic videos of different animals and a human, and achieve quantitative results which outperform our baselines. Our method uses 3D keypoints in conjunction with individual local feature vectors and a global latent code to allow for an efficient representation of time-varying and articulated shapes such as humans and animals. In contrast to previous work, we do not perform reconstruction in the 3D domain, but project the 3D features into 2D cameras and perform reconstruction of 2D RGB-D images from these projected features, which is significantly faster than volumetric rendering. Our synthetic dataset will be publicly available, to further develop the evolving field of animal pose and shape reconstruction.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

16th Asian Conference on Computer Vision (ACCV 2022), 4. Dez. 2022 - 8. Dez. 2022, Macao, China
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690GIEBENHAIN, Simon, Urs WALDMANN, Ole JOHANNSEN, Bastian GOLDLÜCKE, 2023. Neural Puppeteer : Keypoint-Based Neural Rendering of Dynamic Shapes. 16th Asian Conference on Computer Vision (ACCV 2022). Macao, China, 4. Dez. 2022 - 8. Dez. 2022. In: WANG, Lei, ed., Juergen GALL, ed., Tat-Jun CHIN, ed., Imari SATO, ed., Rama CHELLAPPA, ed.. Computer Vision - ACCV 2022 : 16th Asian Conference on Computer Vision, Macao, China, December 4–8, 2022, Proceedings, Part IV. Cham: Springer, 2023, pp. 239-256. Lecture Notes in Computer Science. 13844. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-031-26315-6. Available under: doi: 10.1007/978-3-031-26316-3_15
BibTex
@inproceedings{Giebenhain2023Neura-67349,
  year={2023},
  doi={10.1007/978-3-031-26316-3_15},
  title={Neural Puppeteer : Keypoint-Based Neural Rendering of Dynamic Shapes},
  number={13844},
  isbn={978-3-031-26315-6},
  issn={0302-9743},
  publisher={Springer},
  address={Cham},
  series={Lecture Notes in Computer Science},
  booktitle={Computer Vision - ACCV 2022 : 16th Asian Conference on Computer Vision, Macao, China, December 4–8, 2022, Proceedings, Part IV},
  pages={239--256},
  editor={Wang, Lei and Gall, Juergen and Chin, Tat-Jun and Sato, Imari and Chellappa, Rama},
  author={Giebenhain, Simon and Waldmann, Urs and Johannsen, Ole and Goldlücke, Bastian}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/67349">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-07-11T06:46:23Z</dc:date>
    <dc:language>eng</dc:language>
    <dcterms:title>Neural Puppeteer : Keypoint-Based Neural Rendering of Dynamic Shapes</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Waldmann, Urs</dc:creator>
    <dc:creator>Johannsen, Ole</dc:creator>
    <dc:contributor>Giebenhain, Simon</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-07-11T06:46:23Z</dcterms:available>
    <dcterms:issued>2023</dcterms:issued>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/67349"/>
    <dcterms:abstract>We introduce Neural Puppeteer, an efficient neural rendering pipeline for articulated shapes. By inverse rendering, we can predict 3D keypoints from multi-view 2D silhouettes alone, without requiring texture information. Furthermore, we can easily predict 3D keypoints of the same class of shapes with one and the same trained model and generalize more easily from training with synthetic data which we demonstrate by successfully applying zero-shot synthetic to real-world experiments. We demonstrate the flexibility of our method by fitting models to synthetic videos of different animals and a human, and achieve quantitative results which outperform our baselines. Our method uses 3D keypoints in conjunction with individual local feature vectors and a global latent code to allow for an efficient representation of time-varying and articulated shapes such as humans and animals. In contrast to previous work, we do not perform reconstruction in the 3D domain, but project the 3D features into 2D cameras and perform reconstruction of 2D RGB-D images from these projected features, which is significantly faster than volumetric rendering. Our synthetic dataset will be publicly available, to further develop the evolving field of animal pose and shape reconstruction.</dcterms:abstract>
    <dc:contributor>Goldlücke, Bastian</dc:contributor>
    <dc:creator>Giebenhain, Simon</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Goldlücke, Bastian</dc:creator>
    <dc:contributor>Waldmann, Urs</dc:contributor>
    <dc:contributor>Johannsen, Ole</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen