Publikation:

Dashboard of Sentiment in Austrian Social Media During COVID-19

Lade...
Vorschaubild

Dateien

Pellert_2-rgyrj6bgtjsi1.pdf
Pellert_2-rgyrj6bgtjsi1.pdfGröße: 716.62 KBDownloads: 75

Datum

2020

Autor:innen

Pellert, Max
Lasser, Jana
Metzler, Hannah

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Frontiers in Big Data. Frontiers Media. 2020, 3, 32. eISSN 2624-909X. Available under: doi: 10.3389/fdata.2020.00032

Zusammenfassung

To track online emotional expressions on social media platforms close to real-time during the COVID-19 pandemic, we built a self-updating monitor of emotion dynamics using digital traces from three different data sources in Austria. This allows decision makers and the interested public to assess dynamics of sentiment online during the pandemic. We used web scraping and API access to retrieve data from the news platform derstandard.at, Twitter, and a chat platform for students. We documented the technical details of our workflow to provide materials for other researchers interested in building a similar tool for different contexts. Automated text analysis allowed us to highlight changes of language use during COVID-19 in comparison to a neutral baseline. We used special word clouds to visualize that overall difference. Longitudinally, our time series showed spikes in anxiety that can be linked to several events and media reporting. Additionally, we found a marked decrease in anger. The changes lasted for remarkably long periods of time (up to 12 weeks). We have also discussed these and more patterns and connect them to the emergence of collective emotions. The interactive dashboard showcasing our data is available online at http://www.mpellert.at/covid19_monitor_austria/. Our work is part of a web archive of resources on COVID-19 collected by the Austrian National Library.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
320 Politik

Schlagwörter

COVID-19, collective emotions, real-time monitoring, social media, digital traces, webscraping, dashboard, affective sciences

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690PELLERT, Max, Jana LASSER, Hannah METZLER, David GARCIA, 2020. Dashboard of Sentiment in Austrian Social Media During COVID-19. In: Frontiers in Big Data. Frontiers Media. 2020, 3, 32. eISSN 2624-909X. Available under: doi: 10.3389/fdata.2020.00032
BibTex
@article{Pellert2020Dashb-59781,
  year={2020},
  doi={10.3389/fdata.2020.00032},
  title={Dashboard of Sentiment in Austrian Social Media During COVID-19},
  volume={3},
  journal={Frontiers in Big Data},
  author={Pellert, Max and Lasser, Jana and Metzler, Hannah and Garcia, David},
  note={Article Number: 32}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59781">
    <dc:contributor>Lasser, Jana</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dcterms:abstract xml:lang="eng">To track online emotional expressions on social media platforms close to real-time during the COVID-19 pandemic, we built a self-updating monitor of emotion dynamics using digital traces from three different data sources in Austria. This allows decision makers and the interested public to assess dynamics of sentiment online during the pandemic. We used web scraping and API access to retrieve data from the news platform derstandard.at, Twitter, and a chat platform for students. We documented the technical details of our workflow to provide materials for other researchers interested in building a similar tool for different contexts. Automated text analysis allowed us to highlight changes of language use during COVID-19 in comparison to a neutral baseline. We used special word clouds to visualize that overall difference. Longitudinally, our time series showed spikes in anxiety that can be linked to several events and media reporting. Additionally, we found a marked decrease in anger. The changes lasted for remarkably long periods of time (up to 12 weeks). We have also discussed these and more patterns and connect them to the emergence of collective emotions. The interactive dashboard showcasing our data is available online at http://www.mpellert.at/covid19_monitor_austria/. Our work is part of a web archive of resources on COVID-19 collected by the Austrian National Library.</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59781"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-18T12:14:26Z</dcterms:available>
    <dc:creator>Garcia, David</dc:creator>
    <dc:contributor>Metzler, Hannah</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59781/1/Pellert_2-rgyrj6bgtjsi1.pdf"/>
    <dc:creator>Metzler, Hannah</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-18T12:14:26Z</dc:date>
    <dcterms:issued>2020</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Pellert, Max</dc:creator>
    <dcterms:title>Dashboard of Sentiment in Austrian Social Media During COVID-19</dcterms:title>
    <dc:language>eng</dc:language>
    <dc:creator>Lasser, Jana</dc:creator>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dc:contributor>Garcia, David</dc:contributor>
    <dc:contributor>Pellert, Max</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59781/1/Pellert_2-rgyrj6bgtjsi1.pdf"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Unbekannt
Diese Publikation teilen