Publikation: A Benchmark for Content-Based Retrieval in Bivariate Data Collections
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Huge amounts of various research data are produced and made publicly available in digital libraries. An important category is bivariate data (measurements of one variable versus the other). Examples of bivariate data include observations of temperature and ozone levels (e.g., in environmental observation), domestic production and unemployment (e.g., in economics), or education and income level levels (in the social sciences). For accessing these data, content-based retrieval is an important query modality. It allows researchers to search for specific relationships among data variables (e.g., quadratic dependence of temperature on altitude). However, such retrieval is to date a challenge, as it is not clear which similarity measures to apply. Various approaches have been proposed, yet no benchmarks to compare their retrieval effectiveness have been defined. In this paper, we construct a benchmark for retrieval of bivariate data. It is based on a large collection of bivariate research data. To define similarity classes, we use category information that was annotated by domain experts. The resulting similarity classes are used to compare several recently proposed content-based retrieval approaches for bivariate data, by means of precision and recall. This study is the first to present an encompassing benchmark data set and compare the performance of respective techniques. We also identify potential research directions based on the results obtained for bivariate data. The benchmark and implementations of similarity functions are made available, to foster research in this emerging area of content-based retrieval.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SCHERER, Maximilian, Tatiana VON LANDESBERGER, Tobias SCHRECK, 2012. A Benchmark for Content-Based Retrieval in Bivariate Data Collections. In: ZAPHIRIS, Panayiotis, ed., George BUCHANAN, ed., Edie RASMUSSEN, ed., Fernando LOIZIDES, ed.. Theory and Practice of Digital Libraries. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 286-297. Lecture Notes in Computer Science. 7489. ISBN 978-3-642-33289-0. Available under: doi: 10.1007/978-3-642-33290-6_31BibTex
@inproceedings{Scherer2012Bench-22702, year={2012}, doi={10.1007/978-3-642-33290-6_31}, title={A Benchmark for Content-Based Retrieval in Bivariate Data Collections}, number={7489}, isbn={978-3-642-33289-0}, publisher={Springer Berlin Heidelberg}, address={Berlin, Heidelberg}, series={Lecture Notes in Computer Science}, booktitle={Theory and Practice of Digital Libraries}, pages={286--297}, editor={Zaphiris, Panayiotis and Buchanan, George and Rasmussen, Edie and Loizides, Fernando}, author={Scherer, Maximilian and von Landesberger, Tatiana and Schreck, Tobias} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/22702"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-05-09T09:53:57Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Schreck, Tobias</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:issued>2012</dcterms:issued> <dc:rights>terms-of-use</dc:rights> <dcterms:bibliographicCitation>International Conference on Theory and Practice of Digital Libraries : Second International Conference ; Paphos, Cyprus, September 23-27, 2012 / Panayiotis Zaphiris... (eds.). - Berlin [u.a.] : Springer, 2012. - S. 286-297. - ISBN 978-3-642-33289-0</dcterms:bibliographicCitation> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/22702"/> <dc:creator>Schreck, Tobias</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/22702/2/Schreck_227025.pdf"/> <dcterms:abstract xml:lang="eng">Huge amounts of various research data are produced and made publicly available in digital libraries. An important category is bivariate data (measurements of one variable versus the other). Examples of bivariate data include observations of temperature and ozone levels (e.g., in environmental observation), domestic production and unemployment (e.g., in economics), or education and income level levels (in the social sciences). For accessing these data, content-based retrieval is an important query modality. It allows researchers to search for specific relationships among data variables (e.g., quadratic dependence of temperature on altitude). However, such retrieval is to date a challenge, as it is not clear which similarity measures to apply. Various approaches have been proposed, yet no benchmarks to compare their retrieval effectiveness have been defined. In this paper, we construct a benchmark for retrieval of bivariate data. It is based on a large collection of bivariate research data. To define similarity classes, we use category information that was annotated by domain experts. The resulting similarity classes are used to compare several recently proposed content-based retrieval approaches for bivariate data, by means of precision and recall. This study is the first to present an encompassing benchmark data set and compare the performance of respective techniques. We also identify potential research directions based on the results obtained for bivariate data. The benchmark and implementations of similarity functions are made available, to foster research in this emerging area of content-based retrieval.</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Scherer, Maximilian</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-09-30T22:25:04Z</dcterms:available> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>von Landesberger, Tatiana</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/22702/2/Schreck_227025.pdf"/> <dc:language>eng</dc:language> <dcterms:title>A Benchmark for Content-Based Retrieval in Bivariate Data Collections</dcterms:title> <dc:contributor>Scherer, Maximilian</dc:contributor> <dc:creator>von Landesberger, Tatiana</dc:creator> </rdf:Description> </rdf:RDF>