Publikation:

Convex Entropy, Hopf Bifurcation, and Viscous and Inviscid Shock Stability

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2015

Autor:innen

Barker, Blake
Zumbrun, Kevin

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Archive for Rational Mechanics and Analysis. 2015, 217(1), pp. 309-372. ISSN 0003-9527. eISSN 1432-0673. Available under: doi: 10.1007/s00205-014-0838-6

Zusammenfassung

We consider by a combination of analytical and numerical techniques, some basic questions regarding the relations between inviscid and viscous stability and the existence of a convex entropy. Specifically, for a system possessing a convex entropy, in particular for the equations of gas dynamics with a convex equation of state, we ask: (1) can inviscid instability occur? (2) can viscous instability not detected by inviscid theory occur? (3) can there occur the—necessarily viscous—effect of Hopf bifurcation, or “galloping instability”? and, perhaps most important from a practical point of view, (4) as shock amplitude is increased from the (stable) weak-amplitude limit, can there occur a first transition from viscous stability to instability that is not detected by inviscid theory? We show that (1) does occur for strictly hyperbolic, genuinely nonlinear gas dynamics with certain convex equations of state, while (2) and (3) do occur for an artifically constructed system with convex viscosity-compatible entropy. We do not know of an example for which (4) occurs, leaving this as a key open question in viscous shock theory, related to the principal eigenvalue property of Sturm Liouville and related operators. In analogy with, and partly proceeding close to, the analysis of Smith on (non-)uniqueness of the Riemann problem, we obtain convenient criteria for shock (in)stability in the form of necessary and sufficient conditions on the equation of state.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Mechanics, Physics, general, Theoretical, Mathematical and Computational Physics, Statistical Physics, Dynamical Systems and Complexity, Fluid- and Aerodynamics

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BARKER, Blake, Heinrich FREISTÜHLER, Kevin ZUMBRUN, 2015. Convex Entropy, Hopf Bifurcation, and Viscous and Inviscid Shock Stability. In: Archive for Rational Mechanics and Analysis. 2015, 217(1), pp. 309-372. ISSN 0003-9527. eISSN 1432-0673. Available under: doi: 10.1007/s00205-014-0838-6
BibTex
@article{Barker2015Conve-31097,
  year={2015},
  doi={10.1007/s00205-014-0838-6},
  title={Convex Entropy, Hopf Bifurcation, and Viscous and Inviscid Shock Stability},
  number={1},
  volume={217},
  issn={0003-9527},
  journal={Archive for Rational Mechanics and Analysis},
  pages={309--372},
  author={Barker, Blake and Freistühler, Heinrich and Zumbrun, Kevin}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/31097">
    <dc:contributor>Barker, Blake</dc:contributor>
    <dc:contributor>Zumbrun, Kevin</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-06-02T13:06:50Z</dc:date>
    <dc:creator>Zumbrun, Kevin</dc:creator>
    <dcterms:abstract xml:lang="eng">We consider by a combination of analytical and numerical techniques, some basic questions regarding the relations between inviscid and viscous stability and the existence of a convex entropy. Specifically, for a system possessing a convex entropy, in particular for the equations of gas dynamics with a convex equation of state, we ask: (1) can inviscid instability occur? (2) can viscous instability not detected by inviscid theory occur? (3) can there occur the—necessarily viscous—effect of Hopf bifurcation, or “galloping instability”? and, perhaps most important from a practical point of view, (4) as shock amplitude is increased from the (stable) weak-amplitude limit, can there occur a first transition from viscous stability to instability that is not detected by inviscid theory? We show that (1) does occur for strictly hyperbolic, genuinely nonlinear gas dynamics with certain convex equations of state, while (2) and (3) do occur for an artifically constructed system with convex viscosity-compatible entropy. We do not know of an example for which (4) occurs, leaving this as a key open question in viscous shock theory, related to the principal eigenvalue property of Sturm Liouville and related operators. In analogy with, and partly proceeding close to, the analysis of Smith on (non-)uniqueness of the Riemann problem, we obtain convenient criteria for shock (in)stability in the form of necessary and sufficient conditions on the equation of state.</dcterms:abstract>
    <dc:creator>Freistühler, Heinrich</dc:creator>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/31097"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-06-02T13:06:50Z</dcterms:available>
    <dc:language>eng</dc:language>
    <dc:contributor>Freistühler, Heinrich</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Barker, Blake</dc:creator>
    <dcterms:issued>2015</dcterms:issued>
    <dcterms:title>Convex Entropy, Hopf Bifurcation, and Viscous and Inviscid Shock Stability</dcterms:title>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen