Publikation:

On nonparametric regression for bivariate circular long-memory time series

Lade...
Vorschaubild

Dateien

Beran_2-qyhrecwhqg129.pdf
Beran_2-qyhrecwhqg129.pdfGröße: 768.14 KBDownloads: 70

Datum

2022

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Statistical Papers. Springer. 2022, 63(1), pp. 29-52. ISSN 0932-5026. eISSN 1613-9798. Available under: doi: 10.1007/s00362-021-01228-1

Zusammenfassung

We consider nonparametric regression for bivariate circular time series with long-range dependence. Asymptotic results for circular Nadaraya–Watson estimators are derived. Due to long-range dependence, a range of asymptotically optimal bandwidths can be found where the asymptotic rate of convergence does not depend on the bandwidth. The result can be used for obtaining simple confidence bands for the regression function. The method is illustrated by an application to wind direction data.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BERAN, Jan, Britta STEFFENS, Sucharita GHOSH, 2022. On nonparametric regression for bivariate circular long-memory time series. In: Statistical Papers. Springer. 2022, 63(1), pp. 29-52. ISSN 0932-5026. eISSN 1613-9798. Available under: doi: 10.1007/s00362-021-01228-1
BibTex
@article{Beran2022-02nonpa-53410,
  year={2022},
  doi={10.1007/s00362-021-01228-1},
  title={On nonparametric regression for bivariate circular long-memory time series},
  number={1},
  volume={63},
  issn={0932-5026},
  journal={Statistical Papers},
  pages={29--52},
  author={Beran, Jan and Steffens, Britta and Ghosh, Sucharita}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53410">
    <dc:creator>Beran, Jan</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53410/1/Beran_2-qyhrecwhqg129.pdf"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53410"/>
    <dcterms:abstract xml:lang="eng">We consider nonparametric regression for bivariate circular time series with long-range dependence. Asymptotic results for circular Nadaraya–Watson estimators are derived. Due to long-range dependence, a range of asymptotically optimal bandwidths can be found where the asymptotic rate of convergence does not depend on the bandwidth. The result can be used for obtaining simple confidence bands for the regression function. The method is illustrated by an application to wind direction data.</dcterms:abstract>
    <dcterms:issued>2022-02</dcterms:issued>
    <dc:contributor>Steffens, Britta</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-04-20T09:23:37Z</dc:date>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:title>On nonparametric regression for bivariate circular long-memory time series</dcterms:title>
    <dc:language>eng</dc:language>
    <dc:contributor>Beran, Jan</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53410/1/Beran_2-qyhrecwhqg129.pdf"/>
    <dc:contributor>Ghosh, Sucharita</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Steffens, Britta</dc:creator>
    <dc:creator>Ghosh, Sucharita</dc:creator>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-04-20T09:23:37Z</dcterms:available>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt
Diese Publikation teilen