Publikation: Valuation bases for generalized algebraic series fields
Lade...
Dateien
Datum
2009
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Journal of Algebra. 2009, 322(5), pp. 1430-1453. Available under: doi: 10.1016/j.jalgebra.2009.05.031
Zusammenfassung
We investigate valued fields which admit a valuation basis. Given a countable ordered abelian group G and a real closed or algebraically closed field F with subfield K, we give a sufficient condition for a valued subfield of the field of generalized power series F((G)) to admit a K-valuation basis. We show that the field of rational functions F(G) and the field F(G)not, vert, similar of power series in F((G)) algebraic over F(G) satisfy this condition. It follows that for archimedean F and divisible G the real closed field F(G)not, vert, similar admits a restricted exponential function.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Valuation independence, Generalized series fields, Fields of Puiseux series, Restricted exponential function
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
KUHLMANN, Franz-Viktor, Salma KUHLMANN, Jonathan W. LEE, 2009. Valuation bases for generalized algebraic series fields. In: Journal of Algebra. 2009, 322(5), pp. 1430-1453. Available under: doi: 10.1016/j.jalgebra.2009.05.031BibTex
@article{Kuhlmann2009Valua-638, year={2009}, doi={10.1016/j.jalgebra.2009.05.031}, title={Valuation bases for generalized algebraic series fields}, number={5}, volume={322}, journal={Journal of Algebra}, pages={1430--1453}, author={Kuhlmann, Franz-Viktor and Kuhlmann, Salma and Lee, Jonathan W.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/638"> <dc:contributor>Kuhlmann, Franz-Viktor</dc:contributor> <dc:contributor>Lee, Jonathan W.</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/638/1/Kuhlmann_valuation_bases.pdf"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/638"/> <dc:creator>Lee, Jonathan W.</dc:creator> <dcterms:abstract xml:lang="eng">We investigate valued fields which admit a valuation basis. Given a countable ordered abelian group G and a real closed or algebraically closed field F with subfield K, we give a sufficient condition for a valued subfield of the field of generalized power series F((G)) to admit a K-valuation basis. We show that the field of rational functions F(G) and the field F(G)not, vert, similar of power series in F((G)) algebraic over F(G) satisfy this condition. It follows that for archimedean F and divisible G the real closed field F(G)not, vert, similar admits a restricted exponential function.</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:format>application/pdf</dc:format> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Kuhlmann, Salma</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:issued>2009</dcterms:issued> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/638/1/Kuhlmann_valuation_bases.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:19Z</dcterms:available> <dc:creator>Kuhlmann, Salma</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:19Z</dc:date> <dc:creator>Kuhlmann, Franz-Viktor</dc:creator> <dcterms:bibliographicCitation>First publ. in: Journal of Algebra 322 (2009), 5, pp. 1430-1453</dcterms:bibliographicCitation> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:title>Valuation bases for generalized algebraic series fields</dcterms:title> <dc:language>eng</dc:language> <dc:rights>terms-of-use</dc:rights> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja