Publikation: POD-Based Mixed-Integer Optimal Control of Convection-Diffusion Equations
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In this thesis we consider the numerical treatment of mixed-integer optimal control problems governed by linear convection-diffusion equations and binary control constraints. We use relaxation techniques for the optimal control problem which have been already used in mixed-integer optimal control problems for ordinary differential equations. The goal is to construct binary admissible controls such that the corresponding optimal state and the optimal value of the cost function of the relaxed problem can be approximated with arbitrary accuracy. To solve the optimal control problems of the relaxation we have to solve many state and adjoint equations. Using finite element methods to discretize the state and adjoint equations yields often to extensive systems which make the frequently calculations time-consuming. Therefore we apply a model-order reduction by the proper orthogonal decomposition (POD) method. This yields to a significant acceleration of the CPU time while the error stays small. Finally we present numerical experiments to verify the functionality of the presented algorithm and the quality of the solutions of the reduced problem.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
JÄKLE, Christian, 2019. POD-Based Mixed-Integer Optimal Control of Convection-Diffusion Equations [Master thesis]. Konstanz: Universität KonstanzBibTex
@mastersthesis{Jakle2019PODBa-47332, year={2019}, title={POD-Based Mixed-Integer Optimal Control of Convection-Diffusion Equations}, address={Konstanz}, school={Universität Konstanz}, author={Jäkle, Christian} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/47332"> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:issued>2019</dcterms:issued> <dc:contributor>Jäkle, Christian</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/47332/5/Jaekle_2-qgy7rxfhsbp89.pdf"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-11-04T06:21:11Z</dc:date> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/47332"/> <dcterms:abstract xml:lang="eng">In this thesis we consider the numerical treatment of mixed-integer optimal control problems governed by linear convection-diffusion equations and binary control constraints. We use relaxation techniques for the optimal control problem which have been already used in mixed-integer optimal control problems for ordinary differential equations. The goal is to construct binary admissible controls such that the corresponding optimal state and the optimal value of the cost function of the relaxed problem can be approximated with arbitrary accuracy. To solve the optimal control problems of the relaxation we have to solve many state and adjoint equations. Using finite element methods to discretize the state and adjoint equations yields often to extensive systems which make the frequently calculations time-consuming. Therefore we apply a model-order reduction by the proper orthogonal decomposition (POD) method. This yields to a significant acceleration of the CPU time while the error stays small. Finally we present numerical experiments to verify the functionality of the presented algorithm and the quality of the solutions of the reduced problem.</dcterms:abstract> <dcterms:title>POD-Based Mixed-Integer Optimal Control of Convection-Diffusion Equations</dcterms:title> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-11-04T06:21:11Z</dcterms:available> <dc:creator>Jäkle, Christian</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/47332/5/Jaekle_2-qgy7rxfhsbp89.pdf"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:rights>terms-of-use</dc:rights> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>