Publikation:

SPACE : Cardinality Estimation for Path Queries Using Cardinality-Aware Sequence-based Learning

Lade...
Vorschaubild

Dateien

Aytimur_2-q9zj76598tp48.pdf
Aytimur_2-q9zj76598tp48.pdfGröße: 972.51 KBDownloads: 5

Datum

2025

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Deutsche Forschungsgemeinschaft (DFG): GR 4497/5
Deutsche Forschungsgemeinschaft (DFG): CH 2464/1

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Proceedings of the ACM on Management of Data. ACM. 2025, 3(3), 218. eISSN 2836-6573. Verfügbar unter: doi: 10.1145/3725355

Zusammenfassung

Cardinality estimation is a central task of cost-based database query optimization. Accurate estimates enable optimizers to identify and avoid expensive plans requiring large intermediate results. While cardinality estimation has been studied extensively in relational databases, research in the setting of graph databases has been more scarce. Furthermore, recent studies have shown that machine-learning-based methods can be utilized for cardinality estimation in both relational and graph databases. In this paper, we focus on the problem of estimating the cardinality of path patterns in graph databases, and we propose the Sequence-based Path Pattern Cardinality Estimator (SPACE). Our approach treats path patterns as sequences of node labels and edge types and assign similar cardinalities to path patterns with similar node and edge order. SPACE uses a dual approach: it encodes the sequence of nodes and edges to capture structural characteristics of the path pattern, while also incorporating a cardinality-based encoding to integrate cardinality information throughout learning. In a comprehensive experimental evaluation, we show that our method outperforms the state of the art in terms of both accuracy (Q-error) and training time.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690AYTIMUR, Mehmet, Theodoros CHONDROGIANNIS, Michael GROSSNIKLAUS, 2025. SPACE : Cardinality Estimation for Path Queries Using Cardinality-Aware Sequence-based Learning. In: Proceedings of the ACM on Management of Data. ACM. 2025, 3(3), 218. eISSN 2836-6573. Verfügbar unter: doi: 10.1145/3725355
BibTex
@article{Aytimur2025-06-17SPACE-73672,
  title={SPACE : Cardinality Estimation for Path Queries Using Cardinality-Aware Sequence-based Learning},
  year={2025},
  doi={10.1145/3725355},
  number={3},
  volume={3},
  journal={Proceedings of the ACM on Management of Data},
  author={Aytimur, Mehmet and Chondrogiannis, Theodoros and Grossniklaus, Michael},
  note={Article Number: 218}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/73672">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-06-24T07:24:38Z</dc:date>
    <dc:creator>Aytimur, Mehmet</dc:creator>
    <dc:contributor>Aytimur, Mehmet</dc:contributor>
    <dc:contributor>Chondrogiannis, Theodoros</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/73672/1/Aytimur_2-q9zj76598tp48.pdf"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/73672"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/73672/1/Aytimur_2-q9zj76598tp48.pdf"/>
    <dcterms:title>SPACE : Cardinality Estimation for Path Queries Using Cardinality-Aware Sequence-based Learning</dcterms:title>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Grossniklaus, Michael</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-06-24T07:24:38Z</dcterms:available>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:issued>2025-06-17</dcterms:issued>
    <dc:contributor>Grossniklaus, Michael</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:creator>Chondrogiannis, Theodoros</dc:creator>
    <dcterms:abstract>Cardinality estimation is a central task of cost-based database query optimization. Accurate estimates enable optimizers to identify and avoid expensive plans requiring large intermediate results. While cardinality estimation has been studied extensively in relational databases, research in the setting of graph databases has been more scarce. Furthermore, recent studies have shown that machine-learning-based methods can be utilized for cardinality estimation in both relational and graph databases. In this paper, we focus on the problem of estimating the cardinality of path patterns in graph databases, and we propose the Sequence-based Path Pattern Cardinality Estimator (SPACE). Our approach treats path patterns as sequences of node labels and edge types and assign similar cardinalities to path patterns with similar node and edge order. SPACE uses a dual approach: it encodes the sequence of nodes and edges to capture structural characteristics of the path pattern, while also incorporating a cardinality-based encoding to integrate cardinality information throughout learning. In a comprehensive experimental evaluation, we show that our method outperforms the state of the art in terms of both accuracy (Q-error) and training time.</dcterms:abstract>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen