Publikation: SPACE : Cardinality Estimation for Path Queries Using Cardinality-Aware Sequence-based Learning
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Deutsche Forschungsgemeinschaft (DFG): CH 2464/1
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Cardinality estimation is a central task of cost-based database query optimization. Accurate estimates enable optimizers to identify and avoid expensive plans requiring large intermediate results. While cardinality estimation has been studied extensively in relational databases, research in the setting of graph databases has been more scarce. Furthermore, recent studies have shown that machine-learning-based methods can be utilized for cardinality estimation in both relational and graph databases. In this paper, we focus on the problem of estimating the cardinality of path patterns in graph databases, and we propose the Sequence-based Path Pattern Cardinality Estimator (SPACE). Our approach treats path patterns as sequences of node labels and edge types and assign similar cardinalities to path patterns with similar node and edge order. SPACE uses a dual approach: it encodes the sequence of nodes and edges to capture structural characteristics of the path pattern, while also incorporating a cardinality-based encoding to integrate cardinality information throughout learning. In a comprehensive experimental evaluation, we show that our method outperforms the state of the art in terms of both accuracy (Q-error) and training time.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
AYTIMUR, Mehmet, Theodoros CHONDROGIANNIS, Michael GROSSNIKLAUS, 2025. SPACE : Cardinality Estimation for Path Queries Using Cardinality-Aware Sequence-based Learning. In: Proceedings of the ACM on Management of Data. ACM. 2025, 3(3), 218. eISSN 2836-6573. Verfügbar unter: doi: 10.1145/3725355BibTex
@article{Aytimur2025-06-17SPACE-73672, title={SPACE : Cardinality Estimation for Path Queries Using Cardinality-Aware Sequence-based Learning}, year={2025}, doi={10.1145/3725355}, number={3}, volume={3}, journal={Proceedings of the ACM on Management of Data}, author={Aytimur, Mehmet and Chondrogiannis, Theodoros and Grossniklaus, Michael}, note={Article Number: 218} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/73672"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-06-24T07:24:38Z</dc:date> <dc:creator>Aytimur, Mehmet</dc:creator> <dc:contributor>Aytimur, Mehmet</dc:contributor> <dc:contributor>Chondrogiannis, Theodoros</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/73672/1/Aytimur_2-q9zj76598tp48.pdf"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/73672"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/73672/1/Aytimur_2-q9zj76598tp48.pdf"/> <dcterms:title>SPACE : Cardinality Estimation for Path Queries Using Cardinality-Aware Sequence-based Learning</dcterms:title> <dc:rights>terms-of-use</dc:rights> <dc:creator>Grossniklaus, Michael</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-06-24T07:24:38Z</dcterms:available> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:issued>2025-06-17</dcterms:issued> <dc:contributor>Grossniklaus, Michael</dc:contributor> <dc:language>eng</dc:language> <dc:creator>Chondrogiannis, Theodoros</dc:creator> <dcterms:abstract>Cardinality estimation is a central task of cost-based database query optimization. Accurate estimates enable optimizers to identify and avoid expensive plans requiring large intermediate results. While cardinality estimation has been studied extensively in relational databases, research in the setting of graph databases has been more scarce. Furthermore, recent studies have shown that machine-learning-based methods can be utilized for cardinality estimation in both relational and graph databases. In this paper, we focus on the problem of estimating the cardinality of path patterns in graph databases, and we propose the Sequence-based Path Pattern Cardinality Estimator (SPACE). Our approach treats path patterns as sequences of node labels and edge types and assign similar cardinalities to path patterns with similar node and edge order. SPACE uses a dual approach: it encodes the sequence of nodes and edges to capture structural characteristics of the path pattern, while also incorporating a cardinality-based encoding to integrate cardinality information throughout learning. In a comprehensive experimental evaluation, we show that our method outperforms the state of the art in terms of both accuracy (Q-error) and training time.</dcterms:abstract> </rdf:Description> </rdf:RDF>