Publikation:

Using Saliency for Semantic Image Abstractions in Robotic Painting

Lade...
Vorschaubild

Dateien

Stroh_2-q9pw5o6dwzto1.pdf
Stroh_2-q9pw5o6dwzto1.pdfGröße: 25.38 MBDownloads: 0

Datum

2025

Autor:innen

Berio, Daniel
Leymarie, Frederic Fol
Faraj, Noura

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Deutsche Forschungsgemeinschaft (DFG): 508324734
Deutsche Forschungsgemeinschaft (DFG): 251654672 TRR 161

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Computer Graphics Forum. Wiley. 2025, 44(7), e70259. ISSN 0167-7055. eISSN 1467-8659. Verfügbar unter: doi: 10.1111/cgf.70259

Zusammenfassung

We present an adaptive, semantics‐based abstraction approach that balances aesthetic quality and structural coherence within the practical constraints of robotic painting. We apply panoptic segmentation with color‐based over‐segmentation to partition images into meaningful regions aligned with semantic objects, while providing flexible abstraction levels. Automatic parameter selection for region merging is enabled by semantic saliency maps, derived from Out‐of‐Distribution segmentation techniques in combination with machine learning methods for feature detection. This preserves the boundaries of salient objects while simplifying less prominent regions. A graph‐based community detection step further refines the abstraction by grouping regions according to local connectivity and semantic coherence. The runtime of our method outperforms optimization‐based image vectorization methods, enabling the efficient generation of multiple abstraction levels that can serve as hierarchical layers for robotic painting. We demonstrate the quality of our method by showing abstraction results, robotic paintings with the e‐David robot, and a comparison to other abstraction methods.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690STROH, Michael, Patrick PAETZOLD, Daniel BERIO, Rebecca KEHLBECK, Frederic Fol LEYMARIE, Oliver DEUSSEN, Noura FARAJ, 2025. Using Saliency for Semantic Image Abstractions in Robotic Painting. In: Computer Graphics Forum. Wiley. 2025, 44(7), e70259. ISSN 0167-7055. eISSN 1467-8659. Verfügbar unter: doi: 10.1111/cgf.70259
BibTex
@article{Stroh2025-10Using-74807,
  title={Using Saliency for Semantic Image Abstractions in Robotic Painting},
  year={2025},
  doi={10.1111/cgf.70259},
  number={7},
  volume={44},
  issn={0167-7055},
  journal={Computer Graphics Forum},
  author={Stroh, Michael and Paetzold, Patrick and Berio, Daniel and Kehlbeck, Rebecca and Leymarie, Frederic Fol and Deussen, Oliver and Faraj, Noura},
  note={Article Number: e70259}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/74807">
    <dcterms:abstract>We present an adaptive, semantics‐based abstraction approach that balances aesthetic quality and structural coherence within the practical constraints of robotic painting. We apply panoptic segmentation with color‐based over‐segmentation to partition images into meaningful regions aligned with semantic objects, while providing flexible abstraction levels. Automatic parameter selection for region merging is enabled by semantic saliency maps, derived from Out‐of‐Distribution segmentation techniques in combination with machine learning methods for feature detection. This preserves the boundaries of salient objects while simplifying less prominent regions. A graph‐based community detection step further refines the abstraction by grouping regions according to local connectivity and semantic coherence. The runtime of our method outperforms optimization‐based image vectorization methods, enabling the efficient generation of multiple abstraction levels that can serve as hierarchical layers for robotic painting. We demonstrate the quality of our method by showing abstraction results, robotic paintings with the e‐David robot, and a comparison to other abstraction methods.</dcterms:abstract>
    <dcterms:issued>2025-10</dcterms:issued>
    <dc:contributor>Deussen, Oliver</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/74807/1/Stroh_2-q9pw5o6dwzto1.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Paetzold, Patrick</dc:contributor>
    <dc:creator>Paetzold, Patrick</dc:creator>
    <dc:contributor>Leymarie, Frederic Fol</dc:contributor>
    <dc:contributor>Berio, Daniel</dc:contributor>
    <dc:creator>Faraj, Noura</dc:creator>
    <dc:contributor>Kehlbeck, Rebecca</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-10-13T12:00:17Z</dcterms:available>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:language>eng</dc:language>
    <dc:creator>Deussen, Oliver</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Berio, Daniel</dc:creator>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:contributor>Stroh, Michael</dc:contributor>
    <dc:creator>Leymarie, Frederic Fol</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/74807"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/74807/1/Stroh_2-q9pw5o6dwzto1.pdf"/>
    <dcterms:title>Using Saliency for Semantic Image Abstractions in Robotic Painting</dcterms:title>
    <dc:creator>Stroh, Michael</dc:creator>
    <dc:creator>Kehlbeck, Rebecca</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-10-13T12:00:17Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Faraj, Noura</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen