Publikation: Using Saliency for Semantic Image Abstractions in Robotic Painting
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Deutsche Forschungsgemeinschaft (DFG): 251654672 TRR 161
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We present an adaptive, semantics‐based abstraction approach that balances aesthetic quality and structural coherence within the practical constraints of robotic painting. We apply panoptic segmentation with color‐based over‐segmentation to partition images into meaningful regions aligned with semantic objects, while providing flexible abstraction levels. Automatic parameter selection for region merging is enabled by semantic saliency maps, derived from Out‐of‐Distribution segmentation techniques in combination with machine learning methods for feature detection. This preserves the boundaries of salient objects while simplifying less prominent regions. A graph‐based community detection step further refines the abstraction by grouping regions according to local connectivity and semantic coherence. The runtime of our method outperforms optimization‐based image vectorization methods, enabling the efficient generation of multiple abstraction levels that can serve as hierarchical layers for robotic painting. We demonstrate the quality of our method by showing abstraction results, robotic paintings with the e‐David robot, and a comparison to other abstraction methods.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
STROH, Michael, Patrick PAETZOLD, Daniel BERIO, Rebecca KEHLBECK, Frederic Fol LEYMARIE, Oliver DEUSSEN, Noura FARAJ, 2025. Using Saliency for Semantic Image Abstractions in Robotic Painting. In: Computer Graphics Forum. Wiley. 2025, 44(7), e70259. ISSN 0167-7055. eISSN 1467-8659. Verfügbar unter: doi: 10.1111/cgf.70259BibTex
@article{Stroh2025-10Using-74807,
title={Using Saliency for Semantic Image Abstractions in Robotic Painting},
year={2025},
doi={10.1111/cgf.70259},
number={7},
volume={44},
issn={0167-7055},
journal={Computer Graphics Forum},
author={Stroh, Michael and Paetzold, Patrick and Berio, Daniel and Kehlbeck, Rebecca and Leymarie, Frederic Fol and Deussen, Oliver and Faraj, Noura},
note={Article Number: e70259}
}RDF
<rdf:RDF
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:bibo="http://purl.org/ontology/bibo/"
xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:void="http://rdfs.org/ns/void#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#" >
<rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/74807">
<dcterms:abstract>We present an adaptive, semantics‐based abstraction approach that balances aesthetic quality and structural coherence within the practical constraints of robotic painting. We apply panoptic segmentation with color‐based over‐segmentation to partition images into meaningful regions aligned with semantic objects, while providing flexible abstraction levels. Automatic parameter selection for region merging is enabled by semantic saliency maps, derived from Out‐of‐Distribution segmentation techniques in combination with machine learning methods for feature detection. This preserves the boundaries of salient objects while simplifying less prominent regions. A graph‐based community detection step further refines the abstraction by grouping regions according to local connectivity and semantic coherence. The runtime of our method outperforms optimization‐based image vectorization methods, enabling the efficient generation of multiple abstraction levels that can serve as hierarchical layers for robotic painting. We demonstrate the quality of our method by showing abstraction results, robotic paintings with the e‐David robot, and a comparison to other abstraction methods.</dcterms:abstract>
<dcterms:issued>2025-10</dcterms:issued>
<dc:contributor>Deussen, Oliver</dc:contributor>
<dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/74807/1/Stroh_2-q9pw5o6dwzto1.pdf"/>
<void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
<dc:contributor>Paetzold, Patrick</dc:contributor>
<dc:creator>Paetzold, Patrick</dc:creator>
<dc:contributor>Leymarie, Frederic Fol</dc:contributor>
<dc:contributor>Berio, Daniel</dc:contributor>
<dc:creator>Faraj, Noura</dc:creator>
<dc:contributor>Kehlbeck, Rebecca</dc:contributor>
<dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-10-13T12:00:17Z</dcterms:available>
<dc:rights>Attribution 4.0 International</dc:rights>
<dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
<dc:language>eng</dc:language>
<dc:creator>Deussen, Oliver</dc:creator>
<dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
<dc:creator>Berio, Daniel</dc:creator>
<dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
<dc:contributor>Stroh, Michael</dc:contributor>
<dc:creator>Leymarie, Frederic Fol</dc:creator>
<bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/74807"/>
<dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/74807/1/Stroh_2-q9pw5o6dwzto1.pdf"/>
<dcterms:title>Using Saliency for Semantic Image Abstractions in Robotic Painting</dcterms:title>
<dc:creator>Stroh, Michael</dc:creator>
<dc:creator>Kehlbeck, Rebecca</dc:creator>
<dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-10-13T12:00:17Z</dc:date>
<foaf:homepage rdf:resource="http://localhost:8080/"/>
<dc:contributor>Faraj, Noura</dc:contributor>
</rdf:Description>
</rdf:RDF>