Publikation: Evaluating the single crystallinity of sea urchin calcite
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Deutsche Forschungsgemeinschaft (DFG): SCHM 930/11-2
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Recent advancements in electron backscatter diffraction (EBSD) data evaluation enable the determination of misorientation between crystals below 0.1°, while with conventional EBSD data evaluation, the smallest misorientation precision between crystals scatters between 0.5°-1°. Sea urchin tests and spines are lightweight biomaterials with a serrated microstructure comprising interlinked calcite crystals. We investigated the microstructure and crystallographic texture of Cidaris cidaris and Paracentrotus lividus test and spine calcite with advanced EBSD measurement and data evaluation. In particular, we re-evaluated the widely accepted single-crystallinity of sea urchin calcite. We found that the test and the spines comprise calcite crystals with different fabrics and a significant variation in crystal co-orientation strength. Even the highly co-oriented calcite of C. cidaris and P. lividus is not perfectly single-crystalline. We found test and spine portions that feature significant internal misorientations (1-3°). Test c-axis orientation in C. cidaris is tangential to the outer test surface, while in the spines, it is parallel to the morphological axis of the spine. Primary and secondary spines feature a bimodal crystal texture comprising co-oriented calcite surrounded by a cortex of misoriented crystals. Crystal misorientation in the spine cortex seems to result mainly from competitive growth determinants. Deciphering the degree of crystallinity and mode of crystal organisation of biological hard tissues is vital for understanding their exceptional control of structure, material architecture and material properties. Statement of significance: Echinoids form lightweight biomineralised skeletal elements with outstanding material properties and a complex microstructure formed of interlinked calcite crystals. The degree of crystallinity and the crystallographic organisation of the calcitic tests and spines are still under debate. We investigate and discuss the crystallinity, microstructure, and texture of Cidaris cidaris and Paracentrotus lividus test and spine crystals. Unprecedented and not yet used for biomineralised carbonate tissues, we apply electron backscatter diffraction pattern matching data evaluation, enabling detection of misorientation precision below 0.1., relative to 0.5.-1. misorientation precision obtained from conventional EBSD data evaluation. We demonstrate that sea urchin test plates and spines are not single crystals. They feature internal small-angle misorientations and poorly cooriented, polycrystalline regions with intricate microstructures.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
HOERL, Sebastian, Erika GRIESSHABER, Antonio G. CHECA, Aimo WINKELMANN, Frank FÖRSTER, Osama ALSHEIKHA, Felix HIDALGO, Elena V. STURM, Sandro JAHN, Wolfgang W. SCHMAHL, 2025. Evaluating the single crystallinity of sea urchin calcite. In: Acta Biomaterialia. Elsevier. ISSN 1742-7061. eISSN 1878-7568. Verfügbar unter: doi: 10.1016/j.actbio.2025.03.044BibTex
@article{Hoerl2025-03Evalu-72900, title={Evaluating the single crystallinity of sea urchin calcite}, year={2025}, doi={10.1016/j.actbio.2025.03.044}, issn={1742-7061}, journal={Acta Biomaterialia}, author={Hoerl, Sebastian and Griesshaber, Erika and Checa, Antonio G. and Winkelmann, Aimo and Förster, Frank and Alsheikha, Osama and Hidalgo, Felix and Sturm, Elena V. and Jahn, Sandro and Schmahl, Wolfgang W.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/72900"> <dc:contributor>Griesshaber, Erika</dc:contributor> <dc:contributor>Hoerl, Sebastian</dc:contributor> <dc:creator>Hoerl, Sebastian</dc:creator> <dc:contributor>Hidalgo, Felix</dc:contributor> <dc:contributor>Schmahl, Wolfgang W.</dc:contributor> <dc:creator>Griesshaber, Erika</dc:creator> <dc:creator>Hidalgo, Felix</dc:creator> <dc:contributor>Sturm, Elena V.</dc:contributor> <dc:creator>Schmahl, Wolfgang W.</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/> <dc:contributor>Winkelmann, Aimo</dc:contributor> <dc:language>eng</dc:language> <dc:contributor>Checa, Antonio G.</dc:contributor> <dc:creator>Winkelmann, Aimo</dc:creator> <dc:contributor>Jahn, Sandro</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/> <dc:creator>Förster, Frank</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-04-02T10:05:55Z</dcterms:available> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/72900"/> <dc:contributor>Förster, Frank</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-04-02T10:05:55Z</dc:date> <dc:rights>Attribution 4.0 International</dc:rights> <dc:creator>Alsheikha, Osama</dc:creator> <dc:creator>Jahn, Sandro</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Checa, Antonio G.</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:title>Evaluating the single crystallinity of sea urchin calcite</dcterms:title> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dc:creator>Sturm, Elena V.</dc:creator> <dc:contributor>Alsheikha, Osama</dc:contributor> <dcterms:abstract>Recent advancements in electron backscatter diffraction (EBSD) data evaluation enable the determination of misorientation between crystals below 0.1°, while with conventional EBSD data evaluation, the smallest misorientation precision between crystals scatters between 0.5°-1°. Sea urchin tests and spines are lightweight biomaterials with a serrated microstructure comprising interlinked calcite crystals. We investigated the microstructure and crystallographic texture of Cidaris cidaris and Paracentrotus lividus test and spine calcite with advanced EBSD measurement and data evaluation. In particular, we re-evaluated the widely accepted single-crystallinity of sea urchin calcite. We found that the test and the spines comprise calcite crystals with different fabrics and a significant variation in crystal co-orientation strength. Even the highly co-oriented calcite of C. cidaris and P. lividus is not perfectly single-crystalline. We found test and spine portions that feature significant internal misorientations (1-3°). Test c-axis orientation in C. cidaris is tangential to the outer test surface, while in the spines, it is parallel to the morphological axis of the spine. Primary and secondary spines feature a bimodal crystal texture comprising co-oriented calcite surrounded by a cortex of misoriented crystals. Crystal misorientation in the spine cortex seems to result mainly from competitive growth determinants. Deciphering the degree of crystallinity and mode of crystal organisation of biological hard tissues is vital for understanding their exceptional control of structure, material architecture and material properties. Statement of significance: Echinoids form lightweight biomineralised skeletal elements with outstanding material properties and a complex microstructure formed of interlinked calcite crystals. The degree of crystallinity and the crystallographic organisation of the calcitic tests and spines are still under debate. We investigate and discuss the crystallinity, microstructure, and texture of Cidaris cidaris and Paracentrotus lividus test and spine crystals. Unprecedented and not yet used for biomineralised carbonate tissues, we apply electron backscatter diffraction pattern matching data evaluation, enabling detection of misorientation precision below 0.1., relative to 0.5.-1. misorientation precision obtained from conventional EBSD data evaluation. We demonstrate that sea urchin test plates and spines are not single crystals. They feature internal small-angle misorientations and poorly cooriented, polycrystalline regions with intricate microstructures.</dcterms:abstract> <dcterms:issued>2025-03</dcterms:issued> </rdf:Description> </rdf:RDF>