Publikation:

Conditional Independence in Dynamic Networks

Lade...
Vorschaubild

Dateien

Lerner_259920.pdf
Lerner_259920.pdfGröße: 410.78 KBDownloads: 687

Datum

2013

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Mathematical Psychology. 2013, 57(6), pp. 275-283. ISSN 0022-2496. eISSN 1096-0880. Available under: doi: 10.1016/j.jmp.2012.03.002

Zusammenfassung

Given a longitudinal network observed at time points t1<⋯<tT, tie changes that happen in the interval (th,th+1) typically depend on the networks at t1,…,th. In this article we deal with the question whether changes within one interval mutually depend on each other or whether they are conditionally independent, given the previously observed networks. Answering this question for given data is of high practical relevance since, if the conditional independence assumption is valid, network dynamics can be modeled with simple and computationally efficient statistical techniques for independent observations. Consequently, we propose a framework to systematically compare conditional independence models with more general models that are specifically designed for social network data. Our results suggest that conditional independence models are inappropriate as a general model for network evolution and can lead to distorted substantive findings on structural network effects, such as transitivity. On the other hand, the conditional independence assumption becomes less severe when inter-observation times are relatively short.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690LERNER, Jürgen, Natalie INDLEKOFER, Bobo NICK, Ulrik BRANDES, 2013. Conditional Independence in Dynamic Networks. In: Journal of Mathematical Psychology. 2013, 57(6), pp. 275-283. ISSN 0022-2496. eISSN 1096-0880. Available under: doi: 10.1016/j.jmp.2012.03.002
BibTex
@article{Lerner2013Condi-25992,
  year={2013},
  doi={10.1016/j.jmp.2012.03.002},
  title={Conditional Independence in Dynamic Networks},
  number={6},
  volume={57},
  issn={0022-2496},
  journal={Journal of Mathematical Psychology},
  pages={275--283},
  author={Lerner, Jürgen and Indlekofer, Natalie and Nick, Bobo and Brandes, Ulrik}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/25992">
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Brandes, Ulrik</dc:contributor>
    <dc:contributor>Lerner, Jürgen</dc:contributor>
    <dc:creator>Indlekofer, Natalie</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-01-29T08:19:07Z</dc:date>
    <dc:creator>Brandes, Ulrik</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:title>Conditional Independence in Dynamic Networks</dcterms:title>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-01-29T08:19:07Z</dcterms:available>
    <dc:contributor>Nick, Bobo</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/25992/2/Lerner_259920.pdf"/>
    <dc:language>eng</dc:language>
    <dcterms:bibliographicCitation>Journal of Mathematical Psychology ; 57 (2013), 6. - S. 275-283</dcterms:bibliographicCitation>
    <dcterms:issued>2013</dcterms:issued>
    <dcterms:abstract xml:lang="eng">Given a longitudinal network observed at time points t1&lt;⋯&lt;tT, tie changes that happen in the interval (th,th+1) typically depend on the networks at t1,…,th. In this article we deal with the question whether changes within one interval mutually depend on each other or whether they are conditionally independent, given the previously observed networks. Answering this question for given data is of high practical relevance since, if the conditional independence assumption is valid, network dynamics can be modeled with simple and computationally efficient statistical techniques for independent observations. Consequently, we propose a framework to systematically compare conditional independence models with more general models that are specifically designed for social network data. Our results suggest that conditional independence models are inappropriate as a general model for network evolution and can lead to distorted substantive findings on structural network effects, such as transitivity. On the other hand, the conditional independence assumption becomes less severe when inter-observation times are relatively short.</dcterms:abstract>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/25992"/>
    <dc:creator>Lerner, Jürgen</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/25992/2/Lerner_259920.pdf"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Indlekofer, Natalie</dc:contributor>
    <dc:creator>Nick, Bobo</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen