Publikation:

Toward Out-of-Distribution Generalization Through Inductive Biases

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2022

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

MÜLLER, Vincent C., ed.. Philosophy and Theory of Artificial Intelligence 2021. Cham: Springer, 2022, pp. 57-66. Studies in Applied Philosophy, Epistemology and Rational Ethics. 63. ISBN 978-3-031-09152-0. Available under: doi: 10.1007/978-3-031-09153-7_5

Zusammenfassung

State-of-the-art Machine Learning systems are able to process and analyze a large amount of data but they still struggle to generalize to out-of-distribution scenarios. To use Judea Pearl’s words, “Data are profoundly dumb" (Pearl&Mackenzie, 2018); possessing a model of the world, a representation through which to frame reality is a necessary requirement in order to discriminate between relevant and irrelevant information and to deal with unknown scenarios. The aim of this paper is to address the crucial challenge of out-of-distribution generalization in automated systems by developing an understanding of how human agents build models to act in a dynamic environment. The steps needed to reach this goal are described by Pearl through the metaphor of the Ladder of Causation. In this paper, I support the relevance of inductive biases in order for an agent to reach the second rung on the Ladder: that of actively interacting with the environment.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
100 Philosophie

Schlagwörter

robustness, agency, causality, counterfactuality, artificial intelligence

Konferenz

Philosophy and Theory of Artificial Intelligence 2021 : PTAI 2021, 27. Sept. 2021 - 28. Sept. 2021, Gothenburg, Sweden
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690MORUZZI, Caterina, 2022. Toward Out-of-Distribution Generalization Through Inductive Biases. Philosophy and Theory of Artificial Intelligence 2021 : PTAI 2021. Gothenburg, Sweden, 27. Sept. 2021 - 28. Sept. 2021. In: MÜLLER, Vincent C., ed.. Philosophy and Theory of Artificial Intelligence 2021. Cham: Springer, 2022, pp. 57-66. Studies in Applied Philosophy, Epistemology and Rational Ethics. 63. ISBN 978-3-031-09152-0. Available under: doi: 10.1007/978-3-031-09153-7_5
BibTex
@inproceedings{Moruzzi2022Towar-57918,
  year={2022},
  doi={10.1007/978-3-031-09153-7_5},
  title={Toward Out-of-Distribution Generalization Through Inductive Biases},
  number={63},
  isbn={978-3-031-09152-0},
  publisher={Springer},
  address={Cham},
  series={Studies in Applied Philosophy, Epistemology and Rational Ethics},
  booktitle={Philosophy and Theory of Artificial Intelligence 2021},
  pages={57--66},
  editor={Müller, Vincent C.},
  author={Moruzzi, Caterina}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/57918">
    <dcterms:issued>2022</dcterms:issued>
    <dc:rights>terms-of-use</dc:rights>
    <dc:language>eng</dc:language>
    <dcterms:title>Toward Out-of-Distribution Generalization Through Inductive Biases</dcterms:title>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-07-04T07:01:55Z</dc:date>
    <dc:creator>Moruzzi, Caterina</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-07-04T07:01:55Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Moruzzi, Caterina</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/57918"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:abstract xml:lang="eng">State-of-the-art Machine Learning systems are able to process and analyze a large amount of data but they still struggle to generalize to out-of-distribution scenarios. To use Judea Pearl’s words, “Data are profoundly dumb" (Pearl&amp;Mackenzie, 2018); possessing a model of the world, a representation through which to frame reality is a necessary requirement in order to discriminate between relevant and irrelevant information and to deal with unknown scenarios. The aim of this paper is to address the crucial challenge of out-of-distribution generalization in automated systems by developing an understanding of how human agents build models to act in a dynamic environment. The steps needed to reach this goal are described by Pearl through the metaphor of the Ladder of Causation. In this paper, I support the relevance of inductive biases in order for an agent to reach the second rung on the Ladder: that of actively interacting with the environment.</dcterms:abstract>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen