Publikation: The Architecture and Datasets of Docear's Research Paper Recommender System
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In the past few years, we have developed a research paper recommender system for our reference management software Docear. In this paper, we introduce the architecture of the recommender system and four datasets. The architecture comprises of multiple components, e.g. for crawling PDFs, generating user models, and calculating content-based recommendations. It supports researchers and developers in building their own research paper recommender systems, and is, to the best of our knowledge, the most comprehensive architecture that has been released in this field. The four datasets contain metadata of 9.4 million academic articles, including 1.8 million articles publicly available on the Web; the articles' citation network; anonymized information on 8,059 Docear users; information about the users' 52,202 mind-maps and personal libraries; and details on the 308,146 recommendations that the recommender system delivered. The datasets are a unique source of information to enable, for instance, research on collaborative filtering, content-based filtering, and the use of reference-management and mind-mapping software.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BEEL, Joeran, Stefan LANGER, Bela GIPP, Andreas NÜRNBERGER, 2014. The Architecture and Datasets of Docear's Research Paper Recommender System. In: D-Lib Magazine. 2014, 20(11/12). eISSN 1082-9873. Available under: doi: 10.1045/november14-beelBibTex
@article{Beel2014Archi-30315, year={2014}, doi={10.1045/november14-beel}, title={The Architecture and Datasets of Docear's Research Paper Recommender System}, number={11/12}, volume={20}, journal={D-Lib Magazine}, author={Beel, Joeran and Langer, Stefan and Gipp, Bela and Nürnberger, Andreas} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30315"> <dc:creator>Nürnberger, Andreas</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/30315/1/Beel_0-283248.pdf"/> <dc:contributor>Langer, Stefan</dc:contributor> <dcterms:title>The Architecture and Datasets of Docear's Research Paper Recommender System</dcterms:title> <dc:creator>Gipp, Bela</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-16T15:28:18Z</dcterms:available> <dc:language>eng</dc:language> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-16T15:28:18Z</dc:date> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Beel, Joeran</dc:creator> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Gipp, Bela</dc:contributor> <dcterms:abstract xml:lang="eng">In the past few years, we have developed a research paper recommender system for our reference management software Docear. In this paper, we introduce the architecture of the recommender system and four datasets. The architecture comprises of multiple components, e.g. for crawling PDFs, generating user models, and calculating content-based recommendations. It supports researchers and developers in building their own research paper recommender systems, and is, to the best of our knowledge, the most comprehensive architecture that has been released in this field. The four datasets contain metadata of 9.4 million academic articles, including 1.8 million articles publicly available on the Web; the articles' citation network; anonymized information on 8,059 Docear users; information about the users' 52,202 mind-maps and personal libraries; and details on the 308,146 recommendations that the recommender system delivered. The datasets are a unique source of information to enable, for instance, research on collaborative filtering, content-based filtering, and the use of reference-management and mind-mapping software.</dcterms:abstract> <dc:contributor>Beel, Joeran</dc:contributor> <dcterms:issued>2014</dcterms:issued> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30315"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Langer, Stefan</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/30315/1/Beel_0-283248.pdf"/> <dc:contributor>Nürnberger, Andreas</dc:contributor> </rdf:Description> </rdf:RDF>