Publikation: Floquet Expansion by Counting Pump Photons
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Swiss National Science Foundation: CRSII5_206008/1
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Periodically driven systems engender a rich competition between the timescales of the drives and those of the system, leading to a limited ability to describe the system in full. We present a framework for the description of interacting bosonic driven systems via a Floquet expansion on top of a quantization that “counts” the drive photons, and provide compelling arguments for the superior performance of our method relative to standard Floquet approaches. Crucially, our approach extends beyond the rotating wave approximation and addresses the long-standing issue of mismatch between the quantum Floquet formalism and its classical counterpart. We, furthermore, pinpoint key corrections to the positions of multiphoton resonances, which are commonly used in the calibration and operation of qubit architectures.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SEIBOLD, Kilian, Orjan AMEYE, Oded ZILBERBERG, 2025. Floquet Expansion by Counting Pump Photons. In: Physical Review Letters. American Physical Society (APS). 2025, 134(6), 060401. ISSN 0031-9007. eISSN 1079-7114. Verfügbar unter: doi: 10.1103/physrevlett.134.060401BibTex
@article{Seibold2025-02-10Floqu-72302, title={Floquet Expansion by Counting Pump Photons}, year={2025}, doi={10.1103/physrevlett.134.060401}, number={6}, volume={134}, issn={0031-9007}, journal={Physical Review Letters}, author={Seibold, Kilian and Ameye, Orjan and Zilberberg, Oded}, note={Article Number: 060401} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/72302"> <dc:contributor>Seibold, Kilian</dc:contributor> <dc:creator>Seibold, Kilian</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-02-13T07:27:52Z</dcterms:available> <dcterms:title>Floquet Expansion by Counting Pump Photons</dcterms:title> <dc:contributor>Ameye, Orjan</dc:contributor> <dcterms:issued>2025-02-10</dcterms:issued> <dc:contributor>Zilberberg, Oded</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Ameye, Orjan</dc:creator> <dc:creator>Zilberberg, Oded</dc:creator> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-02-13T07:27:52Z</dc:date> <dcterms:abstract>Periodically driven systems engender a rich competition between the timescales of the drives and those of the system, leading to a limited ability to describe the system in full. We present a framework for the description of interacting bosonic driven systems via a Floquet expansion on top of a quantization that “counts” the drive photons, and provide compelling arguments for the superior performance of our method relative to standard Floquet approaches. Crucially, our approach extends beyond the rotating wave approximation and addresses the long-standing issue of mismatch between the quantum Floquet formalism and its classical counterpart. We, furthermore, pinpoint key corrections to the positions of multiphoton resonances, which are commonly used in the calibration and operation of qubit architectures.</dcterms:abstract> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/72302"/> </rdf:Description> </rdf:RDF>