Publikation: Biopolymer-Directed Magnetic Composites
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The question investigated in this chapter is: Can a material obtain the advantageous material properties of multiple biominerals, when the structural elements in each model biomineral, which are responsible for these properties, are combined into one new bioinspired material? Drawing inspiration from the natural biominerals nacre, chiton teeth, and bacterial magnetosomes, a model material, containing a magnetite-gelatin composite, filling a layered scaffold extracted from natural nacre, can be synthesized. The biopolymer gelatin has a distinct influence on the size and shape of magnetite mineralized at ambient conditions. In the gel state, gelatin can be mineralized to form superpara- and ferrimagnetic gels with tunable particle size. The ferrogel synthesis can also be transferred into demineralized nacre scaffolds, yielding layered hybrid composites. Besides more common analytical methods, SANS is used to investigate the structure of organic and inorganic phases individually, and molecular simulations following the Kawska-Zahn approach are employed to gain insight into the earliest stages of nucleation.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
DEBUS, Christian, Maria SIGLREITMEIER, Helmut CÖLFEN, 2018. Biopolymer-Directed Magnetic Composites. In: MATSUNAGA, Tadashi, ed. and others. Biological Magnetic Materials and Applications. Singapore: Springer, 2018, pp. 175-199. ISBN 978-981-10-8068-5. Available under: doi: 10.1007/978-981-10-8069-2_8BibTex
@incollection{Debus2018Biopo-43333, year={2018}, doi={10.1007/978-981-10-8069-2_8}, title={Biopolymer-Directed Magnetic Composites}, isbn={978-981-10-8068-5}, publisher={Springer}, address={Singapore}, booktitle={Biological Magnetic Materials and Applications}, pages={175--199}, editor={Matsunaga, Tadashi}, author={Debus, Christian and Siglreitmeier, Maria and Cölfen, Helmut} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43333"> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:rights>terms-of-use</dc:rights> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/> <dc:contributor>Cölfen, Helmut</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/> <dc:contributor>Siglreitmeier, Maria</dc:contributor> <dc:creator>Siglreitmeier, Maria</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-09-20T12:12:34Z</dcterms:available> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:title>Biopolymer-Directed Magnetic Composites</dcterms:title> <dc:creator>Cölfen, Helmut</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/43333"/> <dc:creator>Debus, Christian</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-09-20T12:12:34Z</dc:date> <dc:contributor>Debus, Christian</dc:contributor> <dcterms:abstract xml:lang="eng">The question investigated in this chapter is: Can a material obtain the advantageous material properties of multiple biominerals, when the structural elements in each model biomineral, which are responsible for these properties, are combined into one new bioinspired material? Drawing inspiration from the natural biominerals nacre, chiton teeth, and bacterial magnetosomes, a model material, containing a magnetite-gelatin composite, filling a layered scaffold extracted from natural nacre, can be synthesized. The biopolymer gelatin has a distinct influence on the size and shape of magnetite mineralized at ambient conditions. In the gel state, gelatin can be mineralized to form superpara- and ferrimagnetic gels with tunable particle size. The ferrogel synthesis can also be transferred into demineralized nacre scaffolds, yielding layered hybrid composites. Besides more common analytical methods, SANS is used to investigate the structure of organic and inorganic phases individually, and molecular simulations following the Kawska-Zahn approach are employed to gain insight into the earliest stages of nucleation.</dcterms:abstract> <dc:language>eng</dc:language> <dcterms:issued>2018</dcterms:issued> </rdf:Description> </rdf:RDF>