Publikation:

On least squares estimation for long-memory lattice processes

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2009

Autor:innen

Ghosh, Sucharita

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Multivariate Analysis. 2009, 100(10), pp. 2178-2194. Available under: doi: 10.1016/j.jmva.2009.04.007

Zusammenfassung

A flexible class of anisotropic stationary lattice processes with long memory can be defined in terms of a two-way fractional ARIMA (FARIMA) representation. We consider parameter estimation based on minimizing an approximate residual sum of squares. The method can be applied to sampling areas that are not necessarily rectangular. A central limit theorem is derived under general conditions. The method is illustrated by an analysis of satellite data consisting of total column ozone amounts in Europe and the Atlantic respectively.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
310 Statistik

Schlagwörter

Long memory, Fractional ARIMA process, Lattice process, Maximum likelihood estimation, Anisotropy

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BERAN, Jan, Sucharita GHOSH, Dieter SCHELL, 2009. On least squares estimation for long-memory lattice processes. In: Journal of Multivariate Analysis. 2009, 100(10), pp. 2178-2194. Available under: doi: 10.1016/j.jmva.2009.04.007
BibTex
@article{Beran2009least-813,
  year={2009},
  doi={10.1016/j.jmva.2009.04.007},
  title={On least squares estimation for long-memory lattice processes},
  number={10},
  volume={100},
  journal={Journal of Multivariate Analysis},
  pages={2178--2194},
  author={Beran, Jan and Ghosh, Sucharita and Schell, Dieter}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/813">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:48:58Z</dc:date>
    <dc:language>eng</dc:language>
    <dcterms:title>On least squares estimation for long-memory lattice processes</dcterms:title>
    <dcterms:abstract xml:lang="eng">A flexible class of anisotropic stationary lattice processes with long memory can be defined in terms of a two-way fractional ARIMA (FARIMA) representation. We consider parameter estimation based on minimizing an approximate residual sum of squares. The method can be applied to sampling areas that are not necessarily rectangular. A central limit theorem is derived under general conditions. The method is illustrated by an analysis of satellite data consisting of total column ozone amounts in Europe and the Atlantic respectively.</dcterms:abstract>
    <dc:creator>Schell, Dieter</dc:creator>
    <dc:contributor>Ghosh, Sucharita</dc:contributor>
    <dc:contributor>Beran, Jan</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Schell, Dieter</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Ghosh, Sucharita</dc:creator>
    <dcterms:bibliographicCitation>Publ. in: Journal of Multivariate Analysis 100 (2009), 10, pp. 2178-2194</dcterms:bibliographicCitation>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:48:58Z</dcterms:available>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Beran, Jan</dc:creator>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/813"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:issued>2009</dcterms:issued>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen