Publikation: The categorization of natural scenes : brain attention networks revealed by dense sensor ERPs
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The present study examined cortical indicators of selective attention underlying categorization based on target features in natural scenes. The primary focus was to determine the neural sources associated with the processing of target stimuli containing animals compared to non-target control stimuli. Neural source estimation techniques [current source density (CSD) and L2-minimum norm estimate (L2-MNE)] were used to determine the sources of the potential fields measured from 58 sensor sites. Assuring an excellent signal-to-noise ratio, the categorization task consisted of 2400 trials. Replicating previous findings, target and non-target ERP activity diverged sharply around 150 ms after stimulus onset and the early differential ERP activity appeared as positive deflection over fronto-central sensor sites and as negative deflection over temporo-occipital regions. Both source estimation techniques (CSD and L2-MNE) suggested primary sources of the early differential ERP activity in posterior, visual-associative brain regions and, although less pronounced, revealed the contribution of additional anterior sources. These findings suggest that selective attention to category-relevant features reflects the interactions between prefrontal and inferior temporal cortex during visual processing of natural scenes.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
CODISPOTI, Maurizio, Vera FERRARI, Markus JUNGHÖFER, Harald T. SCHUPP, 2006. The categorization of natural scenes : brain attention networks revealed by dense sensor ERPs. In: NeuroImage. 2006, 32(2), pp. 583-591. Available under: doi: 10.1016/j.neuroimage.2006.04.180BibTex
@article{Codispoti2006categ-10494,
year={2006},
doi={10.1016/j.neuroimage.2006.04.180},
title={The categorization of natural scenes : brain attention networks revealed by dense sensor ERPs},
number={2},
volume={32},
journal={NeuroImage},
pages={583--591},
author={Codispoti, Maurizio and Ferrari, Vera and Junghöfer, Markus and Schupp, Harald T.}
}RDF
<rdf:RDF
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:bibo="http://purl.org/ontology/bibo/"
xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:void="http://rdfs.org/ns/void#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#" >
<rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/10494">
<dcterms:bibliographicCitation>Also publ. in: NeuroImage, Vol. 32 (2006) 2, pp. 583-591</dcterms:bibliographicCitation>
<foaf:homepage rdf:resource="http://localhost:8080/"/>
<dc:rights>terms-of-use</dc:rights>
<dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
<dcterms:title>The categorization of natural scenes : brain attention networks revealed by dense sensor ERPs</dcterms:title>
<dcterms:issued>2006</dcterms:issued>
<dc:creator>Junghöfer, Markus</dc:creator>
<dc:creator>Codispoti, Maurizio</dc:creator>
<dc:language>eng</dc:language>
<dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/10494/1/Codispoti_et_al2006.pdf"/>
<dc:contributor>Codispoti, Maurizio</dc:contributor>
<dc:creator>Schupp, Harald T.</dc:creator>
<dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-25T09:18:21Z</dcterms:available>
<dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
<dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
<dc:creator>Ferrari, Vera</dc:creator>
<dc:contributor>Junghöfer, Markus</dc:contributor>
<void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
<dc:contributor>Ferrari, Vera</dc:contributor>
<bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/10494"/>
<dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-25T09:18:21Z</dc:date>
<dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/10494/1/Codispoti_et_al2006.pdf"/>
<dc:contributor>Schupp, Harald T.</dc:contributor>
<dc:format>application/pdf</dc:format>
<dcterms:abstract xml:lang="eng">The present study examined cortical indicators of selective attention underlying categorization based on target features in natural scenes. The primary focus was to determine the neural sources associated with the processing of target stimuli containing animals compared to non-target control stimuli. Neural source estimation techniques [current source density (CSD) and L2-minimum norm estimate (L2-MNE)] were used to determine the sources of the potential fields measured from 58 sensor sites. Assuring an excellent signal-to-noise ratio, the categorization task consisted of 2400 trials. Replicating previous findings, target and non-target ERP activity diverged sharply around 150 ms after stimulus onset and the early differential ERP activity appeared as positive deflection over fronto-central sensor sites and as negative deflection over temporo-occipital regions. Both source estimation techniques (CSD and L2-MNE) suggested primary sources of the early differential ERP activity in posterior, visual-associative brain regions and, although less pronounced, revealed the contribution of additional anterior sources. These findings suggest that selective attention to category-relevant features reflects the interactions between prefrontal and inferior temporal cortex during visual processing of natural scenes.</dcterms:abstract>
</rdf:Description>
</rdf:RDF>