Publikation:

Reducing Ambiguities in Line-Based Density Plots by Image-Space Colorization

Lade...
Vorschaubild

Dateien

Xue_2-oufjf7yq1baa6.pdf
Xue_2-oufjf7yq1baa6.pdfGröße: 3.31 MBDownloads: 45

Datum

2024

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Deutsche Forschungsgemeinschaft (DFG): Project 410883423
Deutsche Forschungsgemeinschaft (DFG): Project 251654672 - TRR 161
Deutsche Forschungsgemeinschaft (DFG): KE 740/17-2
U.S. National Science Foundation (NSF): 62132017
U.S. National Science Foundation (NSF): 62141217
Deutsche Forschungsgemeinschaft (DFG): 410883423
Deutsche Forschungsgemeinschaft (DFG): 251654672

Projekt

Quantitative Methods for Visual Computing
Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

IEEE Transactions on Visualization and Computer Graphics. IEEE. 2024, 30(1), pp. 825-835. ISSN 1077-2626. eISSN 1941-0506. Available under: doi: 10.1109/tvcg.2023.3327149

Zusammenfassung

Line-based density plots are used to reduce visual clutter in line charts with a multitude of individual lines. However, these traditional density plots are often perceived ambiguously, which obstructs the user's identification of underlying trends in complex datasets. Thus, we propose a novel image space coloring method for line-based density plots that enhances their interpretability. Our method employs color not only to visually communicate data density but also to highlight similar regions in the plot, allowing users to identify and distinguish trends easily. We achieve this by performing hierarchical clustering based on the lines passing through each region and mapping the identified clusters to the hue circle using circular MDS. Additionally, we propose a heuristic approach to assign each line to the most probable cluster, enabling users to analyze density and individual lines. We motivate our method by conducting a small-scale user study, demonstrating the effectiveness of our method using synthetic and real-world datasets, and providing an interactive online tool for generating colored line-based density plots.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690XUE, Yumeng, Patrick PAETZOLD, Rebecca KEHLBECK, Bin CHEN, Kin Chung KWAN, Yunhai WANG, Oliver DEUSSEN, 2024. Reducing Ambiguities in Line-Based Density Plots by Image-Space Colorization. In: IEEE Transactions on Visualization and Computer Graphics. IEEE. 2024, 30(1), pp. 825-835. ISSN 1077-2626. eISSN 1941-0506. Available under: doi: 10.1109/tvcg.2023.3327149
BibTex
@article{Xue2024-01Reduc-68954,
  year={2024},
  doi={10.1109/tvcg.2023.3327149},
  title={Reducing Ambiguities in Line-Based Density Plots by Image-Space Colorization},
  number={1},
  volume={30},
  issn={1077-2626},
  journal={IEEE Transactions on Visualization and Computer Graphics},
  pages={825--835},
  author={Xue, Yumeng and Paetzold, Patrick and Kehlbeck, Rebecca and Chen, Bin and Kwan, Kin Chung and Wang, Yunhai and Deussen, Oliver}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/68954">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/68954/4/Xue_2-oufjf7yq1baa6.pdf"/>
    <dc:contributor>Kehlbeck, Rebecca</dc:contributor>
    <dcterms:issued>2024-01</dcterms:issued>
    <dc:contributor>Deussen, Oliver</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-01-08T07:44:43Z</dcterms:available>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Kwan, Kin Chung</dc:creator>
    <dc:creator>Wang, Yunhai</dc:creator>
    <dc:creator>Paetzold, Patrick</dc:creator>
    <dc:contributor>Chen, Bin</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/4.0/"/>
    <dc:contributor>Kwan, Kin Chung</dc:contributor>
    <dc:creator>Deussen, Oliver</dc:creator>
    <dc:contributor>Paetzold, Patrick</dc:contributor>
    <dc:rights>Attribution-NonCommercial-NoDerivatives 4.0 International</dc:rights>
    <dc:contributor>Wang, Yunhai</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/68954"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-01-08T07:44:43Z</dc:date>
    <dc:creator>Xue, Yumeng</dc:creator>
    <dcterms:abstract>Line-based density plots are used to reduce visual clutter in line charts with a multitude of individual lines. However, these traditional density plots are often perceived ambiguously, which obstructs the user's identification of underlying trends in complex datasets. Thus, we propose a novel image space coloring method for line-based density plots that enhances their interpretability. Our method employs color not only to visually communicate data density but also to highlight similar regions in the plot, allowing users to identify and distinguish trends easily. We achieve this by performing hierarchical clustering based on the lines passing through each region and mapping the identified clusters to the hue circle using circular MDS. Additionally, we propose a heuristic approach to assign each line to the most probable cluster, enabling users to analyze density and individual lines. We motivate our method by conducting a small-scale user study, demonstrating the effectiveness of our method using synthetic and real-world datasets, and providing an interactive online tool for generating colored line-based density plots.</dcterms:abstract>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Kehlbeck, Rebecca</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Xue, Yumeng</dc:contributor>
    <dc:creator>Chen, Bin</dc:creator>
    <dcterms:title>Reducing Ambiguities in Line-Based Density Plots by Image-Space Colorization</dcterms:title>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/68954/4/Xue_2-oufjf7yq1baa6.pdf"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen