Publikation:

High-resolution quantitative metabolome analysis of urine by automated flow injection NMR

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2013

Autor:innen

Da Silva, Laeticia
Godejohann, Markus
Martin, Francois-Pierre J.
Collino, Sebastiano
Bernhardt, Jürgen
Toussaint, Olivier
Grubeck-Loebenstein, Beatrix
Gonos, Efstathios S.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

European Union (EU): 200880

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Analytical Chemistry. 2013, 85(12), pp. 5801-5809. ISSN 0003-2700. eISSN 1520-6882. Available under: doi: 10.1021/ac4004776

Zusammenfassung

Metabolism is essential to understand human health. To characterize human metabolism, a high-resolution read-out of the metabolic status under various physiological conditions, either in health or disease, is needed. Metabolomics offers an unprecedented approach for generating system-specific biochemical definitions of a human phenotype through the capture of a variety of metabolites in a single measurement. The emergence of large cohorts in clinical studies increases the demand of technologies able to analyze a large number of measurements, in an automated fashion, in the most robust way. NMR is an established metabolomics tool for obtaining metabolic phenotypes. Here, we describe the analysis of NMR-based urinary profiles for metabolic studies, challenged to a large human study (3007 samples). This method includes the acquisition of nuclear Overhauser effect spectroscopy one-dimensional and J-resolved two-dimensional (J-Res-2D) (1)H NMR spectra obtained on a 600 MHz spectrometer, equipped with a 120 μL flow probe, coupled to a flow-injection analysis system, in full automation under the control of a sampler manager. Samples were acquired at a throughput of ~20 (or 40 when J-Res-2D is included) min/sample. The associated technical analysis error over the full series of analysis is 12%, which demonstrates the robustness of the method. With the aim to describe an overall metabolomics workflow, the quantification of 36 metabolites, mainly related to central carbon metabolism and gut microbial host cometabolism, was obtained, as well as multivariate data analysis of the full spectral profiles. The metabolic read-outs generated using our analytical workflow can therefore be considered for further pathway modeling and/or biological interpretation.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690DA SILVA, Laeticia, Markus GODEJOHANN, Francois-Pierre J. MARTIN, Sebastiano COLLINO, Alexander BÜRKLE, Maria MORENO-VILLANUEVA, Jürgen BERNHARDT, Olivier TOUSSAINT, Beatrix GRUBECK-LOEBENSTEIN, Efstathios S. GONOS, Ewa SIKORA, Tilman GRUNE, Nicolle BREUSING, Claudio FRANCESCHI, Antti HERVONEN, Manfred SPRAUL, Sofia MOCO, 2013. High-resolution quantitative metabolome analysis of urine by automated flow injection NMR. In: Analytical Chemistry. 2013, 85(12), pp. 5801-5809. ISSN 0003-2700. eISSN 1520-6882. Available under: doi: 10.1021/ac4004776
BibTex
@article{DaSilva2013-06-18Highr-25707,
  year={2013},
  doi={10.1021/ac4004776},
  title={High-resolution quantitative metabolome analysis of urine by automated flow injection NMR},
  number={12},
  volume={85},
  issn={0003-2700},
  journal={Analytical Chemistry},
  pages={5801--5809},
  author={Da Silva, Laeticia and Godejohann, Markus and Martin, Francois-Pierre J. and Collino, Sebastiano and Bürkle, Alexander and Moreno-Villanueva, Maria and Bernhardt, Jürgen and Toussaint, Olivier and Grubeck-Loebenstein, Beatrix and Gonos, Efstathios S. and Sikora, Ewa and Grune, Tilman and Breusing, Nicolle and Franceschi, Claudio and Hervonen, Antti and Spraul, Manfred and Moco, Sofia}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/25707">
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-01-14T10:52:45Z</dcterms:available>
    <dc:creator>Da Silva, Laeticia</dc:creator>
    <dc:creator>Gonos, Efstathios S.</dc:creator>
    <dc:creator>Toussaint, Olivier</dc:creator>
    <dcterms:title>High-resolution quantitative metabolome analysis of urine by automated flow injection NMR</dcterms:title>
    <dc:creator>Godejohann, Markus</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Hervonen, Antti</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/25707"/>
    <dc:contributor>Martin, Francois-Pierre J.</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-01-14T10:52:45Z</dc:date>
    <dc:contributor>Spraul, Manfred</dc:contributor>
    <dc:contributor>Toussaint, Olivier</dc:contributor>
    <dc:contributor>Bernhardt, Jürgen</dc:contributor>
    <dc:creator>Hervonen, Antti</dc:creator>
    <dc:contributor>Bürkle, Alexander</dc:contributor>
    <dc:creator>Grune, Tilman</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Sikora, Ewa</dc:creator>
    <dc:contributor>Godejohann, Markus</dc:contributor>
    <dc:contributor>Franceschi, Claudio</dc:contributor>
    <dc:creator>Bernhardt, Jürgen</dc:creator>
    <dcterms:issued>2013-06-18</dcterms:issued>
    <dc:contributor>Grubeck-Loebenstein, Beatrix</dc:contributor>
    <dc:creator>Spraul, Manfred</dc:creator>
    <dc:creator>Bürkle, Alexander</dc:creator>
    <dc:contributor>Grune, Tilman</dc:contributor>
    <dc:contributor>Collino, Sebastiano</dc:contributor>
    <dc:contributor>Sikora, Ewa</dc:contributor>
    <dc:creator>Grubeck-Loebenstein, Beatrix</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:contributor>Breusing, Nicolle</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:abstract>Metabolism is essential to understand human health. To characterize human metabolism, a high-resolution read-out of the metabolic status under various physiological conditions, either in health or disease, is needed. Metabolomics offers an unprecedented approach for generating system-specific biochemical definitions of a human phenotype through the capture of a variety of metabolites in a single measurement. The emergence of large cohorts in clinical studies increases the demand of technologies able to analyze a large number of measurements, in an automated fashion, in the most robust way. NMR is an established metabolomics tool for obtaining metabolic phenotypes. Here, we describe the analysis of NMR-based urinary profiles for metabolic studies, challenged to a large human study (3007 samples). This method includes the acquisition of nuclear Overhauser effect spectroscopy one-dimensional and J-resolved two-dimensional (J-Res-2D) (1)H NMR spectra obtained on a 600 MHz spectrometer, equipped with a 120 μL flow probe, coupled to a flow-injection analysis system, in full automation under the control of a sampler manager. Samples were acquired at a throughput of ~20 (or 40 when J-Res-2D is included) min/sample. The associated technical analysis error over the full series of analysis is 12%, which demonstrates the robustness of the method. With the aim to describe an overall metabolomics workflow, the quantification of 36 metabolites, mainly related to central carbon metabolism and gut microbial host cometabolism, was obtained, as well as multivariate data analysis of the full spectral profiles. The metabolic read-outs generated using our analytical workflow can therefore be considered for further pathway modeling and/or biological interpretation.</dcterms:abstract>
    <dc:contributor>Gonos, Efstathios S.</dc:contributor>
    <dc:creator>Collino, Sebastiano</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Moco, Sofia</dc:contributor>
    <dc:contributor>Da Silva, Laeticia</dc:contributor>
    <dc:contributor>Moreno-Villanueva, Maria</dc:contributor>
    <dc:creator>Moreno-Villanueva, Maria</dc:creator>
    <dcterms:bibliographicCitation>Analytical Chemistry ; 85 (2013), 12. - S. 5801-1809</dcterms:bibliographicCitation>
    <dc:creator>Moco, Sofia</dc:creator>
    <dc:creator>Martin, Francois-Pierre J.</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:creator>Franceschi, Claudio</dc:creator>
    <dc:creator>Breusing, Nicolle</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen