Publikation: High-resolution quantitative metabolome analysis of urine by automated flow injection NMR
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Metabolism is essential to understand human health. To characterize human metabolism, a high-resolution read-out of the metabolic status under various physiological conditions, either in health or disease, is needed. Metabolomics offers an unprecedented approach for generating system-specific biochemical definitions of a human phenotype through the capture of a variety of metabolites in a single measurement. The emergence of large cohorts in clinical studies increases the demand of technologies able to analyze a large number of measurements, in an automated fashion, in the most robust way. NMR is an established metabolomics tool for obtaining metabolic phenotypes. Here, we describe the analysis of NMR-based urinary profiles for metabolic studies, challenged to a large human study (3007 samples). This method includes the acquisition of nuclear Overhauser effect spectroscopy one-dimensional and J-resolved two-dimensional (J-Res-2D) (1)H NMR spectra obtained on a 600 MHz spectrometer, equipped with a 120 μL flow probe, coupled to a flow-injection analysis system, in full automation under the control of a sampler manager. Samples were acquired at a throughput of ~20 (or 40 when J-Res-2D is included) min/sample. The associated technical analysis error over the full series of analysis is 12%, which demonstrates the robustness of the method. With the aim to describe an overall metabolomics workflow, the quantification of 36 metabolites, mainly related to central carbon metabolism and gut microbial host cometabolism, was obtained, as well as multivariate data analysis of the full spectral profiles. The metabolic read-outs generated using our analytical workflow can therefore be considered for further pathway modeling and/or biological interpretation.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
DA SILVA, Laeticia, Markus GODEJOHANN, Francois-Pierre J. MARTIN, Sebastiano COLLINO, Alexander BÜRKLE, Maria MORENO-VILLANUEVA, Jürgen BERNHARDT, Olivier TOUSSAINT, Beatrix GRUBECK-LOEBENSTEIN, Efstathios S. GONOS, Ewa SIKORA, Tilman GRUNE, Nicolle BREUSING, Claudio FRANCESCHI, Antti HERVONEN, Manfred SPRAUL, Sofia MOCO, 2013. High-resolution quantitative metabolome analysis of urine by automated flow injection NMR. In: Analytical Chemistry. 2013, 85(12), pp. 5801-5809. ISSN 0003-2700. eISSN 1520-6882. Available under: doi: 10.1021/ac4004776BibTex
@article{DaSilva2013-06-18Highr-25707, year={2013}, doi={10.1021/ac4004776}, title={High-resolution quantitative metabolome analysis of urine by automated flow injection NMR}, number={12}, volume={85}, issn={0003-2700}, journal={Analytical Chemistry}, pages={5801--5809}, author={Da Silva, Laeticia and Godejohann, Markus and Martin, Francois-Pierre J. and Collino, Sebastiano and Bürkle, Alexander and Moreno-Villanueva, Maria and Bernhardt, Jürgen and Toussaint, Olivier and Grubeck-Loebenstein, Beatrix and Gonos, Efstathios S. and Sikora, Ewa and Grune, Tilman and Breusing, Nicolle and Franceschi, Claudio and Hervonen, Antti and Spraul, Manfred and Moco, Sofia} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/25707"> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-01-14T10:52:45Z</dcterms:available> <dc:creator>Da Silva, Laeticia</dc:creator> <dc:creator>Gonos, Efstathios S.</dc:creator> <dc:creator>Toussaint, Olivier</dc:creator> <dcterms:title>High-resolution quantitative metabolome analysis of urine by automated flow injection NMR</dcterms:title> <dc:creator>Godejohann, Markus</dc:creator> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Hervonen, Antti</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/25707"/> <dc:contributor>Martin, Francois-Pierre J.</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-01-14T10:52:45Z</dc:date> <dc:contributor>Spraul, Manfred</dc:contributor> <dc:contributor>Toussaint, Olivier</dc:contributor> <dc:contributor>Bernhardt, Jürgen</dc:contributor> <dc:creator>Hervonen, Antti</dc:creator> <dc:contributor>Bürkle, Alexander</dc:contributor> <dc:creator>Grune, Tilman</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Sikora, Ewa</dc:creator> <dc:contributor>Godejohann, Markus</dc:contributor> <dc:contributor>Franceschi, Claudio</dc:contributor> <dc:creator>Bernhardt, Jürgen</dc:creator> <dcterms:issued>2013-06-18</dcterms:issued> <dc:contributor>Grubeck-Loebenstein, Beatrix</dc:contributor> <dc:creator>Spraul, Manfred</dc:creator> <dc:creator>Bürkle, Alexander</dc:creator> <dc:contributor>Grune, Tilman</dc:contributor> <dc:contributor>Collino, Sebastiano</dc:contributor> <dc:contributor>Sikora, Ewa</dc:contributor> <dc:creator>Grubeck-Loebenstein, Beatrix</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:contributor>Breusing, Nicolle</dc:contributor> <dc:language>eng</dc:language> <dcterms:abstract>Metabolism is essential to understand human health. To characterize human metabolism, a high-resolution read-out of the metabolic status under various physiological conditions, either in health or disease, is needed. Metabolomics offers an unprecedented approach for generating system-specific biochemical definitions of a human phenotype through the capture of a variety of metabolites in a single measurement. The emergence of large cohorts in clinical studies increases the demand of technologies able to analyze a large number of measurements, in an automated fashion, in the most robust way. NMR is an established metabolomics tool for obtaining metabolic phenotypes. Here, we describe the analysis of NMR-based urinary profiles for metabolic studies, challenged to a large human study (3007 samples). This method includes the acquisition of nuclear Overhauser effect spectroscopy one-dimensional and J-resolved two-dimensional (J-Res-2D) (1)H NMR spectra obtained on a 600 MHz spectrometer, equipped with a 120 μL flow probe, coupled to a flow-injection analysis system, in full automation under the control of a sampler manager. Samples were acquired at a throughput of ~20 (or 40 when J-Res-2D is included) min/sample. The associated technical analysis error over the full series of analysis is 12%, which demonstrates the robustness of the method. With the aim to describe an overall metabolomics workflow, the quantification of 36 metabolites, mainly related to central carbon metabolism and gut microbial host cometabolism, was obtained, as well as multivariate data analysis of the full spectral profiles. The metabolic read-outs generated using our analytical workflow can therefore be considered for further pathway modeling and/or biological interpretation.</dcterms:abstract> <dc:contributor>Gonos, Efstathios S.</dc:contributor> <dc:creator>Collino, Sebastiano</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Moco, Sofia</dc:contributor> <dc:contributor>Da Silva, Laeticia</dc:contributor> <dc:contributor>Moreno-Villanueva, Maria</dc:contributor> <dc:creator>Moreno-Villanueva, Maria</dc:creator> <dcterms:bibliographicCitation>Analytical Chemistry ; 85 (2013), 12. - S. 5801-1809</dcterms:bibliographicCitation> <dc:creator>Moco, Sofia</dc:creator> <dc:creator>Martin, Francois-Pierre J.</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:creator>Franceschi, Claudio</dc:creator> <dc:creator>Breusing, Nicolle</dc:creator> </rdf:Description> </rdf:RDF>