Publikation: Graph Exploration by Multiple Linked Metric Views
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The visualization of relational data by node-link diagrams quickly leads to a degradation of performance at some exploration tasks when the diagrams show visual clutter and overdraw. To address this challenge of large-data graph visualization, we introduce Graph Metric Views, a technique that enriches the visualization of traditional layout strategies for node-link diagrams by additionally allowing an analyst to interactively explore graph-specific metrics such as number of nodes, number of link crossings, link coverage, or degree of orthogonality. To this end, we support an analyst with additional histogram-like representations at the axes of the display space for graph-specific metrics. In this way, a cluttered and densely packed node-link diagram becomes more explorable even for dense graph regions: The user can use the distribution of metric values as an overview and then select regions of interest for further investigation and filtering.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
PANAGIOTIDIS, Alexandros, Michael BURCH, Oliver DEUSSEN, Daniel WEISKOPF, Thomas ERTL, 2014. Graph Exploration by Multiple Linked Metric Views. 18th International Conference on Information Visualisation (IV), 16-18 July 2014. Paris, 16. Juli 2014 - 18. Juli 2014. In: EBAD BANISSI ..., , ed.. Proceedings : 18th International Conference on Information Visualisation (IV), 16-18 July 2014. Piscataway: IEEE, 2014, pp. 19-26. ISBN 978-1-4799-4103-2. Available under: doi: 10.1109/IV.2014.51BibTex
@inproceedings{Panagiotidis2014Graph-29997, year={2014}, doi={10.1109/IV.2014.51}, title={Graph Exploration by Multiple Linked Metric Views}, isbn={978-1-4799-4103-2}, publisher={IEEE}, address={Piscataway}, booktitle={Proceedings : 18th International Conference on Information Visualisation (IV), 16-18 July 2014}, pages={19--26}, editor={Ebad Banissi ...}, author={Panagiotidis, Alexandros and Burch, Michael and Deussen, Oliver and Weiskopf, Daniel and Ertl, Thomas} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29997"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-02-24T12:19:29Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Burch, Michael</dc:contributor> <dc:contributor>Weiskopf, Daniel</dc:contributor> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/29997"/> <dc:contributor>Panagiotidis, Alexandros</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Panagiotidis, Alexandros</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-02-24T12:19:29Z</dcterms:available> <dc:contributor>Ertl, Thomas</dc:contributor> <dc:creator>Deussen, Oliver</dc:creator> <dc:creator>Weiskopf, Daniel</dc:creator> <dc:creator>Burch, Michael</dc:creator> <dc:creator>Ertl, Thomas</dc:creator> <dcterms:title>Graph Exploration by Multiple Linked Metric Views</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2014</dcterms:issued> <dcterms:abstract xml:lang="eng">The visualization of relational data by node-link diagrams quickly leads to a degradation of performance at some exploration tasks when the diagrams show visual clutter and overdraw. To address this challenge of large-data graph visualization, we introduce Graph Metric Views, a technique that enriches the visualization of traditional layout strategies for node-link diagrams by additionally allowing an analyst to interactively explore graph-specific metrics such as number of nodes, number of link crossings, link coverage, or degree of orthogonality. To this end, we support an analyst with additional histogram-like representations at the axes of the display space for graph-specific metrics. In this way, a cluttered and densely packed node-link diagram becomes more explorable even for dense graph regions: The user can use the distribution of metric values as an overview and then select regions of interest for further investigation and filtering.</dcterms:abstract> <dc:contributor>Deussen, Oliver</dc:contributor> </rdf:Description> </rdf:RDF>