Publikation: Stub bundling and confluent spirals for geographic networks
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Edge bundling is a technique to reduce clutter by routing parts of several edges along a shared path. In particular, it is used for visualization of geographic networks where vertices have fixed coordinates. Two main drawbacks of the common approach of bundling the interior of edges are that (i) tangents at endpoints deviate from the line connecting the two endpoints in an uncontrolled way and (ii) there is ambiguity as to which pairs of vertices are actually connected. Both severely reduce the interpretability of geographic network visualizations. We therefore propose methods that bundle edges at their ends rather than their interior. This way, tangents at vertices point in the general direction of all neighbors of edges in the bundle, and ambiguity is avoided altogether. For undirected graphs our approach yields curves with no more than one turning point. For directed graphs we introduce a new drawing style, confluent spiral drawings, in which the direction of edges can be inferred from monotonically increasing curvature along each spiral segment.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
NOCAJ, Arlind, Ulrik BRANDES, 2013. Stub bundling and confluent spirals for geographic networks. In: WISMATH, Stephen, ed., Alexander WOLFF, ed.. Graph Drawing. Cham: Springer International Publishing, 2013, pp. 388-399. Lecture Notes in Computer Science. 8242. ISBN 978-3-319-03840-7. Available under: doi: 10.1007/978-3-319-03841-4_34BibTex
@inproceedings{Nocaj2013bundl-25996, year={2013}, doi={10.1007/978-3-319-03841-4_34}, title={Stub bundling and confluent spirals for geographic networks}, number={8242}, isbn={978-3-319-03840-7}, publisher={Springer International Publishing}, address={Cham}, series={Lecture Notes in Computer Science}, booktitle={Graph Drawing}, pages={388--399}, editor={Wismath, Stephen and Wolff, Alexander}, author={Nocaj, Arlind and Brandes, Ulrik} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/25996"> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Nocaj, Arlind</dc:creator> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Brandes, Ulrik</dc:creator> <dcterms:abstract xml:lang="eng">Edge bundling is a technique to reduce clutter by routing parts of several edges along a shared path. In particular, it is used for visualization of geographic networks where vertices have fixed coordinates. Two main drawbacks of the common approach of bundling the interior of edges are that (i) tangents at endpoints deviate from the line connecting the two endpoints in an uncontrolled way and (ii) there is ambiguity as to which pairs of vertices are actually connected. Both severely reduce the interpretability of geographic network visualizations. We therefore propose methods that bundle edges at their ends rather than their interior. This way, tangents at vertices point in the general direction of all neighbors of edges in the bundle, and ambiguity is avoided altogether. For undirected graphs our approach yields curves with no more than one turning point. For directed graphs we introduce a new drawing style, confluent spiral drawings, in which the direction of edges can be inferred from monotonically increasing curvature along each spiral segment.</dcterms:abstract> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/25996"/> <dc:rights>terms-of-use</dc:rights> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-01-22T13:38:51Z</dcterms:available> <dcterms:issued>2013</dcterms:issued> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/25996/2/Nocaj_259961.pdf"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Nocaj, Arlind</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-01-22T13:38:51Z</dc:date> <dcterms:title>Stub bundling and confluent spirals for geographic networks</dcterms:title> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/25996/2/Nocaj_259961.pdf"/> <dcterms:bibliographicCitation>Graph Drawing : 21st International Symposium, GD 2013, Bordeaux, France, September 23-25, 2013, Revised Selected Papers / Stephen Wismath, Alexander Wolff (eds.). - Cham : Springer International Publishing, 2013. - S. 388-399. - (Lecture Notes in Computer Science ; 8242). - ISBN 978-3-319-03840-7</dcterms:bibliographicCitation> <dc:contributor>Brandes, Ulrik</dc:contributor> </rdf:Description> </rdf:RDF>