Publikation: Discontinuous Galerkin Methods and Model Reduction for the nonlinear Schrödinger Equation with FEniCS and DUNE
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We face the numerical solving process of the nonlinear Schrödinger equation (NLSE), also called Gross-Pitaevskii equation, which is a central semilinear partial differential equation (PDE) in the field of quantum mechanics. Concerning the spatial discretization, we compare the continuous Galerkin (CG) methods with their close relatives, the discontinuous Galerkin (DG) methods. As a practical example, we have a look at the symmetric interior penalty Galerkin (SIPG) method and the standard finite element method (FEM) with piecewise continuous basis functions. The semidiscrete NLSE is solved with the average vector field (AVF) method. A special focus is dedicated to the mass and energy preservation properties of the methods. Further on, we deal with model order reduction, carried out with proper orthogonal decomposition (POD) and randomized singular value decomposition (rSVD). The implementation is made in Python, using also the software FEniCS for CG and DUNE for DG methods.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
HÖLTGE, Dominik, 2020. Discontinuous Galerkin Methods and Model Reduction for the nonlinear Schrödinger Equation with FEniCS and DUNE [Master thesis]. Konstanz: Universität KonstanzBibTex
@mastersthesis{Holtge2020Disco-50621, year={2020}, title={Discontinuous Galerkin Methods and Model Reduction for the nonlinear Schrödinger Equation with FEniCS and DUNE}, address={Konstanz}, school={Universität Konstanz}, author={Höltge, Dominik} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/50621"> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/50621/3/Hoeltge_2-oczlbl3nm9va9.pdf"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/50621"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Höltge, Dominik</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/50621/3/Hoeltge_2-oczlbl3nm9va9.pdf"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:title>Discontinuous Galerkin Methods and Model Reduction for the nonlinear Schrödinger Equation with FEniCS and DUNE</dcterms:title> <dcterms:abstract xml:lang="eng">We face the numerical solving process of the nonlinear Schrödinger equation (NLSE), also called Gross-Pitaevskii equation, which is a central semilinear partial differential equation (PDE) in the field of quantum mechanics. Concerning the spatial discretization, we compare the continuous Galerkin (CG) methods with their close relatives, the discontinuous Galerkin (DG) methods. As a practical example, we have a look at the symmetric interior penalty Galerkin (SIPG) method and the standard finite element method (FEM) with piecewise continuous basis functions. The semidiscrete NLSE is solved with the average vector field (AVF) method. A special focus is dedicated to the mass and energy preservation properties of the methods. Further on, we deal with model order reduction, carried out with proper orthogonal decomposition (POD) and randomized singular value decomposition (rSVD). The implementation is made in Python, using also the software FEniCS for CG and DUNE for DG methods.</dcterms:abstract> <dc:language>eng</dc:language> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-01T09:29:38Z</dc:date> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:issued>2020</dcterms:issued> <dc:rights>terms-of-use</dc:rights> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Höltge, Dominik</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-01T09:29:38Z</dcterms:available> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> </rdf:Description> </rdf:RDF>