Publikation:

Discontinuous Galerkin Methods and Model Reduction for the nonlinear Schrödinger Equation with FEniCS and DUNE

Lade...
Vorschaubild

Dateien

Hoeltge_2-oczlbl3nm9va9.pdf
Hoeltge_2-oczlbl3nm9va9.pdfGröße: 6.94 MBDownloads: 786

Datum

2020

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Masterarbeit/Diplomarbeit
Publikationsstatus
Published

Erschienen in

Zusammenfassung

We face the numerical solving process of the nonlinear Schrödinger equation (NLSE), also called Gross-Pitaevskii equation, which is a central semilinear partial differential equation (PDE) in the field of quantum mechanics. Concerning the spatial discretization, we compare the continuous Galerkin (CG) methods with their close relatives, the discontinuous Galerkin (DG) methods. As a practical example, we have a look at the symmetric interior penalty Galerkin (SIPG) method and the standard finite element method (FEM) with piecewise continuous basis functions. The semidiscrete NLSE is solved with the average vector field (AVF) method. A special focus is dedicated to the mass and energy preservation properties of the methods. Further on, we deal with model order reduction, carried out with proper orthogonal decomposition (POD) and randomized singular value decomposition (rSVD). The implementation is made in Python, using also the software FEniCS for CG and DUNE for DG methods.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

average vector field, PDE, NLSE, DEIM, randomized SVD, POD, discontinuous Galerkin methods

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690HÖLTGE, Dominik, 2020. Discontinuous Galerkin Methods and Model Reduction for the nonlinear Schrödinger Equation with FEniCS and DUNE [Master thesis]. Konstanz: Universität Konstanz
BibTex
@mastersthesis{Holtge2020Disco-50621,
  year={2020},
  title={Discontinuous Galerkin Methods and Model Reduction for the nonlinear Schrödinger Equation with FEniCS and DUNE},
  address={Konstanz},
  school={Universität Konstanz},
  author={Höltge, Dominik}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/50621">
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/50621/3/Hoeltge_2-oczlbl3nm9va9.pdf"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/50621"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Höltge, Dominik</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/50621/3/Hoeltge_2-oczlbl3nm9va9.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:title>Discontinuous Galerkin Methods and Model Reduction for the nonlinear Schrödinger Equation with FEniCS and DUNE</dcterms:title>
    <dcterms:abstract xml:lang="eng">We face the numerical solving process of the nonlinear Schrödinger equation (NLSE), also called Gross-Pitaevskii equation, which is a central semilinear partial differential equation (PDE) in the field of quantum mechanics. Concerning the spatial discretization, we compare the continuous Galerkin (CG) methods with their close relatives, the discontinuous Galerkin (DG) methods. As a practical example, we have a look at the symmetric interior penalty Galerkin (SIPG) method and the standard finite element method (FEM) with piecewise continuous basis functions. The semidiscrete NLSE is solved with the average vector field (AVF) method. A special focus is dedicated to the mass and energy preservation properties of the methods. Further on, we deal with model order reduction, carried out with proper orthogonal decomposition (POD) and randomized singular value decomposition (rSVD). The implementation is made in Python, using also the software FEniCS for CG and DUNE for DG methods.</dcterms:abstract>
    <dc:language>eng</dc:language>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-01T09:29:38Z</dc:date>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:issued>2020</dcterms:issued>
    <dc:rights>terms-of-use</dc:rights>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Höltge, Dominik</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-01T09:29:38Z</dcterms:available>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Hochschulschriftenvermerk
Konstanz, Universität Konstanz, Masterarbeit/Diplomarbeit, 2020
Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen