Publikation:

Low-dimensional neural ODEs and their application in pharmacokinetics

Lade...
Vorschaubild

Dateien

Braem_2-o8lznlcjam6k3.pdf
Braem_2-o8lznlcjam6k3.pdfGröße: 2.34 MBDownloads: 17

Datum

2024

Autor:innen

Bräm, Dominic Stefan
Nahum, Uri
Pfister, Marc

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Pharmacokinetics and Pharmacodynamics. Springer. 2024, 51(2), S. 123-140. ISSN 1567-567X. eISSN 1573-8744. Verfügbar unter: doi: 10.1007/s10928-023-09886-4

Zusammenfassung

Machine Learning (ML) is a fast-evolving field, integrated in many of today’s scientific disciplines. With the recent development of neural ordinary differential equations (NODEs), ML provides a new tool to model dynamical systems in the field of pharmacology and pharmacometrics, such as pharmacokinetics (PK) or pharmacodynamics. The novel and conceptionally different approach of NODEs compared to classical PK modeling creates challenges but also provides opportunities for its application. In this manuscript, we introduce the functionality of NODEs and develop specific low-dimensional NODE structures based on PK principles. We discuss two challenges of NODEs, overfitting and extrapolation to unseen data, and provide practical solutions to these problems. We illustrate concept and application of our proposed low-dimensional NODE approach with several PK modeling examples, including multi-compartmental, target-mediated drug disposition, and delayed absorption behavior. In all investigated scenarios, the NODEs were able to describe the data well and simulate data for new subjects within the observed dosing range. Finally, we briefly demonstrate how NODEs can be combined with mechanistic models. This research work enhances understanding of how NODEs can be applied in PK analyses and illustrates the potential for NODEs in the field of pharmacology and pharmacometrics.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Pharmacometrics, Pharmacokinetics, Machine learning, Neural ordinary differential equations, Neural networks

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BRÄM, Dominic Stefan, Uri NAHUM, Johannes SCHROPP, Marc PFISTER, Gilbert KOCH, 2024. Low-dimensional neural ODEs and their application in pharmacokinetics. In: Journal of Pharmacokinetics and Pharmacodynamics. Springer. 2024, 51(2), S. 123-140. ISSN 1567-567X. eISSN 1573-8744. Verfügbar unter: doi: 10.1007/s10928-023-09886-4
BibTex
@article{Bram2024-04Lowdi-68037,
  year={2024},
  doi={10.1007/s10928-023-09886-4},
  title={Low-dimensional neural ODEs and their application in pharmacokinetics},
  number={2},
  volume={51},
  issn={1567-567X},
  journal={Journal of Pharmacokinetics and Pharmacodynamics},
  pages={123--140},
  author={Bräm, Dominic Stefan and Nahum, Uri and Schropp, Johannes and Pfister, Marc and Koch, Gilbert}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/68037">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Schropp, Johannes</dc:contributor>
    <dc:creator>Schropp, Johannes</dc:creator>
    <dc:creator>Nahum, Uri</dc:creator>
    <dc:contributor>Bräm, Dominic Stefan</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-11-03T08:30:30Z</dc:date>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:creator>Pfister, Marc</dc:creator>
    <dc:creator>Koch, Gilbert</dc:creator>
    <dcterms:issued>2024-04</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:title>Low-dimensional neural ODEs and their application in pharmacokinetics</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/68037/1/Braem_2-o8lznlcjam6k3.pdf"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/68037"/>
    <dcterms:abstract>Machine Learning (ML) is a fast-evolving field, integrated in many of today’s scientific disciplines. With the recent development of neural ordinary differential equations (NODEs), ML provides a new tool to model dynamical systems in the field of pharmacology and pharmacometrics, such as pharmacokinetics (PK) or pharmacodynamics. The novel and conceptionally different approach of NODEs compared to classical PK modeling creates challenges but also provides opportunities for its application. In this manuscript, we introduce the functionality of NODEs and develop specific low-dimensional NODE structures based on PK principles. We discuss two challenges of NODEs, overfitting and extrapolation to unseen data, and provide practical solutions to these problems. We illustrate concept and application of our proposed low-dimensional NODE approach with several PK modeling examples, including multi-compartmental, target-mediated drug disposition, and delayed absorption behavior. In all investigated scenarios, the NODEs were able to describe the data well and simulate data for new subjects within the observed dosing range. Finally, we briefly demonstrate how NODEs can be combined with mechanistic models. This research work enhances understanding of how NODEs can be applied in PK analyses and illustrates the potential for NODEs in the field of pharmacology and pharmacometrics.</dcterms:abstract>
    <dc:language>eng</dc:language>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-11-03T08:30:30Z</dcterms:available>
    <dc:contributor>Pfister, Marc</dc:contributor>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:creator>Bräm, Dominic Stefan</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/68037/1/Braem_2-o8lznlcjam6k3.pdf"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Nahum, Uri</dc:contributor>
    <dc:contributor>Koch, Gilbert</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen