Publikation: On Rayner structures
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2022
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Communications in Algebra. Taylor & Francis. 2022, 50(3), pp. 940-948. ISSN 0092-7872. eISSN 1532-4125. Available under: doi: 10.1080/00927872.2021.1976789
Zusammenfassung
In this note, we study substructures of generalized power series fields induced by families of well-ordered subsets of the group of exponents. We characterize the set-theoretic and algebraic properties of the induced substructures in terms of conditions on the families. We extend the work of Rayner by giving both necessary and sufficient conditions to obtain truncation closed subgroups, subrings and subfields.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
KRAPP, Lothar Sebastian, Salma KUHLMANN, Michele SERRA, 2022. On Rayner structures. In: Communications in Algebra. Taylor & Francis. 2022, 50(3), pp. 940-948. ISSN 0092-7872. eISSN 1532-4125. Available under: doi: 10.1080/00927872.2021.1976789BibTex
@article{Krapp2022Rayne-55183, year={2022}, doi={10.1080/00927872.2021.1976789}, title={On Rayner structures}, number={3}, volume={50}, issn={0092-7872}, journal={Communications in Algebra}, pages={940--948}, author={Krapp, Lothar Sebastian and Kuhlmann, Salma and Serra, Michele} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55183"> <dcterms:issued>2022</dcterms:issued> <dc:contributor>Kuhlmann, Salma</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Serra, Michele</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:abstract xml:lang="eng">In this note, we study substructures of generalized power series fields induced by families of well-ordered subsets of the group of exponents. We characterize the set-theoretic and algebraic properties of the induced substructures in terms of conditions on the families. We extend the work of Rayner by giving both necessary and sufficient conditions to obtain truncation closed subgroups, subrings and subfields.</dcterms:abstract> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-10-08T07:08:59Z</dcterms:available> <dc:creator>Krapp, Lothar Sebastian</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Serra, Michele</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55183"/> <dc:creator>Kuhlmann, Salma</dc:creator> <dcterms:title>On Rayner structures</dcterms:title> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-10-08T07:08:59Z</dc:date> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Krapp, Lothar Sebastian</dc:contributor> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt