Publikation: Selective clustering for representative paintings selection
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Selective classification (or rejection based classification) has been proved useful in many applications. In this paper we describe a selective clustering framework with reject option to carry out large-scale digital arts analysis. With the help of deep learning techniques, we extract content-style features from a pre-trained convolutional network for the paintings. By proposing a rejection mechanism under Bayesian framework, we focus on selecting style-oriented representative paintings of an artist, which is an interesting and challenging cultural heritage application. Two kinds of samples are rejected during the rejection based robust continuous clustering process. Representative paintings are selected during the selective clustering phase. Visual qualitative analysis on small painting set and large scale quantitative experiments on a subset of Wikiart show that the proposed rejection based selective clustering approach outperforms the standard clustering methods.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
DENG, Yingying, Fan TANG, Weiming DONG, Fuzhang WU, Oliver DEUSSEN, Changsheng XU, 2019. Selective clustering for representative paintings selection. In: Multimedia Tools and Applications. 2019, 78(14), pp. 19305-19323. ISSN 1380-7501. eISSN 1573-7721. Available under: doi: 10.1007/s11042-019-7271-7BibTex
@article{Deng2019-07Selec-45588, year={2019}, doi={10.1007/s11042-019-7271-7}, title={Selective clustering for representative paintings selection}, number={14}, volume={78}, issn={1380-7501}, journal={Multimedia Tools and Applications}, pages={19305--19323}, author={Deng, Yingying and Tang, Fan and Dong, Weiming and Wu, Fuzhang and Deussen, Oliver and Xu, Changsheng} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45588"> <dc:rights>terms-of-use</dc:rights> <dc:creator>Deng, Yingying</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-04-05T09:13:45Z</dc:date> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/45588/1/Deng_2-o7wcklpfg6zr4.pdf"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Wu, Fuzhang</dc:creator> <dc:contributor>Deussen, Oliver</dc:contributor> <dcterms:abstract xml:lang="eng">Selective classification (or rejection based classification) has been proved useful in many applications. In this paper we describe a selective clustering framework with reject option to carry out large-scale digital arts analysis. With the help of deep learning techniques, we extract content-style features from a pre-trained convolutional network for the paintings. By proposing a rejection mechanism under Bayesian framework, we focus on selecting style-oriented representative paintings of an artist, which is an interesting and challenging cultural heritage application. Two kinds of samples are rejected during the rejection based robust continuous clustering process. Representative paintings are selected during the selective clustering phase. Visual qualitative analysis on small painting set and large scale quantitative experiments on a subset of Wikiart show that the proposed rejection based selective clustering approach outperforms the standard clustering methods.</dcterms:abstract> <dc:contributor>Tang, Fan</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Tang, Fan</dc:creator> <dc:language>eng</dc:language> <dc:contributor>Dong, Weiming</dc:contributor> <dc:contributor>Xu, Changsheng</dc:contributor> <dc:creator>Xu, Changsheng</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/45588/1/Deng_2-o7wcklpfg6zr4.pdf"/> <dc:contributor>Wu, Fuzhang</dc:contributor> <dc:creator>Deussen, Oliver</dc:creator> <dc:contributor>Deng, Yingying</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-04-05T09:13:45Z</dcterms:available> <dc:creator>Dong, Weiming</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/45588"/> <dcterms:title>Selective clustering for representative paintings selection</dcterms:title> <dcterms:issued>2019-07</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> </rdf:Description> </rdf:RDF>