Publikation:

Selective clustering for representative paintings selection

Lade...
Vorschaubild

Dateien

Deng_2-o7wcklpfg6zr4.pdf
Deng_2-o7wcklpfg6zr4.pdfGröße: 1.35 MBDownloads: 592

Datum

2019

Autor:innen

Deng, Yingying
Tang, Fan
Dong, Weiming
Wu, Fuzhang
Deussen, Oliver
Xu, Changsheng

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Multimedia Tools and Applications. 2019, 78(14), pp. 19305-19323. ISSN 1380-7501. eISSN 1573-7721. Available under: doi: 10.1007/s11042-019-7271-7

Zusammenfassung

Selective classification (or rejection based classification) has been proved useful in many applications. In this paper we describe a selective clustering framework with reject option to carry out large-scale digital arts analysis. With the help of deep learning techniques, we extract content-style features from a pre-trained convolutional network for the paintings. By proposing a rejection mechanism under Bayesian framework, we focus on selecting style-oriented representative paintings of an artist, which is an interesting and challenging cultural heritage application. Two kinds of samples are rejected during the rejection based robust continuous clustering process. Representative paintings are selected during the selective clustering phase. Visual qualitative analysis on small painting set and large scale quantitative experiments on a subset of Wikiart show that the proposed rejection based selective clustering approach outperforms the standard clustering methods.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Digital arts analysis, Pattern mining, Rejection mechanism, Deep feature representation

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690DENG, Yingying, Fan TANG, Weiming DONG, Fuzhang WU, Oliver DEUSSEN, Changsheng XU, 2019. Selective clustering for representative paintings selection. In: Multimedia Tools and Applications. 2019, 78(14), pp. 19305-19323. ISSN 1380-7501. eISSN 1573-7721. Available under: doi: 10.1007/s11042-019-7271-7
BibTex
@article{Deng2019-07Selec-45588,
  year={2019},
  doi={10.1007/s11042-019-7271-7},
  title={Selective clustering for representative paintings selection},
  number={14},
  volume={78},
  issn={1380-7501},
  journal={Multimedia Tools and Applications},
  pages={19305--19323},
  author={Deng, Yingying and Tang, Fan and Dong, Weiming and Wu, Fuzhang and Deussen, Oliver and Xu, Changsheng}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45588">
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Deng, Yingying</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-04-05T09:13:45Z</dc:date>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/45588/1/Deng_2-o7wcklpfg6zr4.pdf"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Wu, Fuzhang</dc:creator>
    <dc:contributor>Deussen, Oliver</dc:contributor>
    <dcterms:abstract xml:lang="eng">Selective classification (or rejection based classification) has been proved useful in many applications. In this paper we describe a selective clustering framework with reject option to carry out large-scale digital arts analysis. With the help of deep learning techniques, we extract content-style features from a pre-trained convolutional network for the paintings. By proposing a rejection mechanism under Bayesian framework, we focus on selecting style-oriented representative paintings of an artist, which is an interesting and challenging cultural heritage application. Two kinds of samples are rejected during the rejection based robust continuous clustering process. Representative paintings are selected during the selective clustering phase. Visual qualitative analysis on small painting set and large scale quantitative experiments on a subset of Wikiart show that the proposed rejection based selective clustering approach outperforms the standard clustering methods.</dcterms:abstract>
    <dc:contributor>Tang, Fan</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Tang, Fan</dc:creator>
    <dc:language>eng</dc:language>
    <dc:contributor>Dong, Weiming</dc:contributor>
    <dc:contributor>Xu, Changsheng</dc:contributor>
    <dc:creator>Xu, Changsheng</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/45588/1/Deng_2-o7wcklpfg6zr4.pdf"/>
    <dc:contributor>Wu, Fuzhang</dc:contributor>
    <dc:creator>Deussen, Oliver</dc:creator>
    <dc:contributor>Deng, Yingying</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-04-05T09:13:45Z</dcterms:available>
    <dc:creator>Dong, Weiming</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/45588"/>
    <dcterms:title>Selective clustering for representative paintings selection</dcterms:title>
    <dcterms:issued>2019-07</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt
Diese Publikation teilen