Publikation: Sample-Efficient Cardinality Estimation Using Geometric Deep Learning
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In database systems, accurate cardinality estimation is a cornerstone of effective query optimization. In this context, estimators that use machine learning have shown significant promise. Despite their potential, the effectiveness of these learned estimators strongly depends on their ability to learn from small training sets.
This paper presents a novel approach for learned cardinality estimation that addresses this issue by enhancing sample efficiency. We propose a neural network architecture informed by geometric deep learning principles that represents queries as join graphs. Furthermore, we introduce an innovative encoding for complex predicates, treating their encoding as a feature selection problem. Additionally, we devise a regularization term that employs equalities of the relational algebra and three-valued logic, augmenting the training process without requiring additional ground truth cardinalities. We rigorously evaluate our model across multiple benchmarks, examining q-errors, runtimes, and the impact of workload distribution shifts. Our results demonstrate that our model significantly improves the end-to-end runtimes of PostgreSQL, even with cardinalities gathered from as little as 100 query executions.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
REINER, Silvan, Michael GROSSNIKLAUS, 2023. Sample-Efficient Cardinality Estimation Using Geometric Deep Learning. In: Proceedings of the VLDB Endowment. Association for Computing Machinery (ACM). 2023, 17(4), pp. 740-752. eISSN 2150-8097. Available under: doi: 10.14778/3636218.3636229BibTex
@article{Reiner2023Sampl-69590, year={2023}, doi={10.14778/3636218.3636229}, title={Sample-Efficient Cardinality Estimation Using Geometric Deep Learning}, number={4}, volume={17}, journal={Proceedings of the VLDB Endowment}, pages={740--752}, author={Reiner, Silvan and Grossniklaus, Michael} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/69590"> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Grossniklaus, Michael</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-03-12T07:46:26Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-03-12T07:46:26Z</dc:date> <dc:contributor>Reiner, Silvan</dc:contributor> <dc:language>eng</dc:language> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:issued>2023</dcterms:issued> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:title>Sample-Efficient Cardinality Estimation Using Geometric Deep Learning</dcterms:title> <dcterms:abstract>In database systems, accurate cardinality estimation is a cornerstone of effective query optimization. In this context, estimators that use machine learning have shown significant promise. Despite their potential, the effectiveness of these learned estimators strongly depends on their ability to learn from small training sets. This paper presents a novel approach for learned cardinality estimation that addresses this issue by enhancing sample efficiency. We propose a neural network architecture informed by geometric deep learning principles that represents queries as join graphs. Furthermore, we introduce an innovative encoding for complex predicates, treating their encoding as a feature selection problem. Additionally, we devise a regularization term that employs equalities of the relational algebra and three-valued logic, augmenting the training process without requiring additional ground truth cardinalities. We rigorously evaluate our model across multiple benchmarks, examining q-errors, runtimes, and the impact of workload distribution shifts. Our results demonstrate that our model significantly improves the end-to-end runtimes of PostgreSQL, even with cardinalities gathered from as little as 100 query executions.</dcterms:abstract> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/69590/1/Reiner_2-o4hxnv1cptt52.pdf"/> <dc:creator>Grossniklaus, Michael</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/69590/1/Reiner_2-o4hxnv1cptt52.pdf"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/69590"/> <dc:rights>terms-of-use</dc:rights> <dc:creator>Reiner, Silvan</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> </rdf:Description> </rdf:RDF>