Publikation:

Sample-Efficient Cardinality Estimation Using Geometric Deep Learning

Lade...
Vorschaubild

Dateien

Reiner_2-o4hxnv1cptt52.pdf
Reiner_2-o4hxnv1cptt52.pdfGröße: 1.03 MBDownloads: 196

Datum

2023

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Proceedings of the VLDB Endowment. Association for Computing Machinery (ACM). 2023, 17(4), pp. 740-752. eISSN 2150-8097. Available under: doi: 10.14778/3636218.3636229

Zusammenfassung

In database systems, accurate cardinality estimation is a cornerstone of effective query optimization. In this context, estimators that use machine learning have shown significant promise. Despite their potential, the effectiveness of these learned estimators strongly depends on their ability to learn from small training sets.

This paper presents a novel approach for learned cardinality estimation that addresses this issue by enhancing sample efficiency. We propose a neural network architecture informed by geometric deep learning principles that represents queries as join graphs. Furthermore, we introduce an innovative encoding for complex predicates, treating their encoding as a feature selection problem. Additionally, we devise a regularization term that employs equalities of the relational algebra and three-valued logic, augmenting the training process without requiring additional ground truth cardinalities. We rigorously evaluate our model across multiple benchmarks, examining q-errors, runtimes, and the impact of workload distribution shifts. Our results demonstrate that our model significantly improves the end-to-end runtimes of PostgreSQL, even with cardinalities gathered from as little as 100 query executions.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690REINER, Silvan, Michael GROSSNIKLAUS, 2023. Sample-Efficient Cardinality Estimation Using Geometric Deep Learning. In: Proceedings of the VLDB Endowment. Association for Computing Machinery (ACM). 2023, 17(4), pp. 740-752. eISSN 2150-8097. Available under: doi: 10.14778/3636218.3636229
BibTex
@article{Reiner2023Sampl-69590,
  year={2023},
  doi={10.14778/3636218.3636229},
  title={Sample-Efficient Cardinality Estimation Using Geometric Deep Learning},
  number={4},
  volume={17},
  journal={Proceedings of the VLDB Endowment},
  pages={740--752},
  author={Reiner, Silvan and Grossniklaus, Michael}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/69590">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Grossniklaus, Michael</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-03-12T07:46:26Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-03-12T07:46:26Z</dc:date>
    <dc:contributor>Reiner, Silvan</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:issued>2023</dcterms:issued>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:title>Sample-Efficient Cardinality Estimation Using Geometric Deep Learning</dcterms:title>
    <dcterms:abstract>In database systems, accurate cardinality estimation is a cornerstone of effective query optimization. In this context, estimators that use machine learning have shown significant promise. Despite their potential, the effectiveness of these learned estimators strongly depends on their ability to learn from small training sets.

This paper presents a novel approach for learned cardinality estimation that addresses this issue by enhancing sample efficiency. We propose a neural network architecture informed by geometric deep learning principles that represents queries as join graphs. Furthermore, we introduce an innovative encoding for complex predicates, treating their encoding as a feature selection problem. Additionally, we devise a regularization term that employs equalities of the relational algebra and three-valued logic, augmenting the training process without requiring additional ground truth cardinalities. We rigorously evaluate our model across multiple benchmarks, examining q-errors, runtimes, and the impact of workload distribution shifts. Our results demonstrate that our model significantly improves the end-to-end runtimes of PostgreSQL, even with cardinalities gathered from as little as 100 query executions.</dcterms:abstract>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/69590/1/Reiner_2-o4hxnv1cptt52.pdf"/>
    <dc:creator>Grossniklaus, Michael</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/69590/1/Reiner_2-o4hxnv1cptt52.pdf"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/69590"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Reiner, Silvan</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen