Publikation: Limit cycles as stationary states of an extended harmonic balance ansatz
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Swiss National Science Foundation: CRSII5_206008/1
Deutsche Forschungsgemeinschaft (DFG): 449653034
Deutsche Forschungsgemeinschaft (DFG): SFB1432
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
A limit cycle is a self-sustained, periodic, isolated motion appearing in autonomous differential equations. As the period of a limit cycle is a priori unknown, finding it as a stationary state of a rotating ansatz is challenging. Correspondingly, its study commonly relies on numerical methodologies (e.g., brute-force time evolution, and variational shooting methods) or circumstantial evidence such as instabilities of fixed points. Alas, such approaches are (i) unable to find all solutions, as they rely on specific initial conditions, and (ii) do not provide analytical intuition about the physical origin of the limit cycles. Here, we (I) develop a multifrequency rotating ansatz with which we (II) find all limit cycles as stationary-state solutions via a semianalytical homotopy continuation. We demonstrate our approach and its performance on the Van der Pol oscillator. Moving beyond this simple example, we show that our method captures all coexisting fixed-point attractors and limit cycles in a modified nonlinear Van der Pol oscillator. Our results facilitate the systematic mapping of out-of-equilibrium phase diagrams, with implications across multiple fields of the natural sciences.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
DEL PINO, Javier, Jan KOSATA, Oded ZILBERBERG, 2024. Limit cycles as stationary states of an extended harmonic balance ansatz. In: Physical Review Research. American Physical Society (APS). 2024, 6(3), 033180. eISSN 2643-1564. Verfügbar unter: doi: 10.1103/physrevresearch.6.033180BibTex
@article{delPino2024-08-19Limit-70744, year={2024}, doi={10.1103/physrevresearch.6.033180}, title={Limit cycles as stationary states of an extended harmonic balance ansatz}, number={3}, volume={6}, journal={Physical Review Research}, author={del Pino, Javier and Kosata, Jan and Zilberberg, Oded}, note={Article Number: 033180} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/70744"> <dc:creator>del Pino, Javier</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dcterms:abstract>A limit cycle is a self-sustained, periodic, isolated motion appearing in autonomous differential equations. As the period of a limit cycle is a priori unknown, finding it as a stationary state of a rotating ansatz is challenging. Correspondingly, its study commonly relies on numerical methodologies (e.g., brute-force time evolution, and variational shooting methods) or circumstantial evidence such as instabilities of fixed points. Alas, such approaches are (i) unable to find all solutions, as they rely on specific initial conditions, and (ii) do not provide analytical intuition about the physical origin of the limit cycles. Here, we (I) develop a multifrequency rotating ansatz with which we (II) find all limit cycles as stationary-state solutions via a semianalytical homotopy continuation. We demonstrate our approach and its performance on the Van der Pol oscillator. Moving beyond this simple example, we show that our method captures all coexisting fixed-point attractors and limit cycles in a modified nonlinear Van der Pol oscillator. Our results facilitate the systematic mapping of out-of-equilibrium phase diagrams, with implications across multiple fields of the natural sciences.</dcterms:abstract> <dcterms:title>Limit cycles as stationary states of an extended harmonic balance ansatz</dcterms:title> <dc:creator>Zilberberg, Oded</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:rights>Attribution 4.0 International</dc:rights> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dc:creator>Kosata, Jan</dc:creator> <dc:language>eng</dc:language> <dcterms:issued>2024-08-19</dcterms:issued> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70744/1/delPino_2-o15k8zon0c930.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-09-06T07:09:39Z</dcterms:available> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/70744"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70744/1/delPino_2-o15k8zon0c930.pdf"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Kosata, Jan</dc:contributor> <dc:contributor>del Pino, Javier</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-09-06T07:09:39Z</dc:date> <dc:contributor>Zilberberg, Oded</dc:contributor> </rdf:Description> </rdf:RDF>