Publikation: A Latent Factor Model for Forecasting Realized Variances
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
This article proposes a parsimonious model to forecast large vectors of realized variances (RVar) by exploiting their common dynamics within a latent factor structure. Their long persistence is captured by aggregating latent factors with AR(1) dynamics. The model has obvious advantages over standard autoregressive models not only in terms of parametrization, but also in terms of efficiency, when increasing the dimension of the vector, as it provides more information on the commonality of the series’ dynamics. The model easily accommodates further empirical features of RVars, such as conditional heteroskedasticity. For estimation purposes, we use the maximum likelihood method based on Kalman filter and the efficient method of moments, both being easy to implement and providing accurate estimates. Our empirical illustration on real data shows that the model we propose often outperforms standard models, most of which are, for vectors of RVar series, only implementable under heavy parametric restrictions.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
CALZOLARI, Giorgio, Roxana CHIRIAC, Aygul ZAGIDULLINA, 2021. A Latent Factor Model for Forecasting Realized Variances. In: Journal of Financial Econometrics. Oxford University Press. 2021, 19(5), pp. 860-909. ISSN 1479-8409. eISSN 1479-8417. Available under: doi: 10.1093/jjfinec/nbz036BibTex
@article{Calzolari2021Laten-48653, year={2021}, doi={10.1093/jjfinec/nbz036}, title={A Latent Factor Model for Forecasting Realized Variances}, number={5}, volume={19}, issn={1479-8409}, journal={Journal of Financial Econometrics}, pages={860--909}, author={Calzolari, Giorgio and Chiriac, Roxana and Zagidullina, Aygul} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/48653"> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/48653/1/Calzolari_2-o0xzt8r9rhci7.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-02-17T07:56:57Z</dcterms:available> <dc:creator>Calzolari, Giorgio</dc:creator> <dcterms:title>A Latent Factor Model for Forecasting Realized Variances</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/48653/1/Calzolari_2-o0xzt8r9rhci7.pdf"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:issued>2021</dcterms:issued> <dc:creator>Zagidullina, Aygul</dc:creator> <dc:contributor>Zagidullina, Aygul</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/48653"/> <dc:creator>Chiriac, Roxana</dc:creator> <dc:contributor>Calzolari, Giorgio</dc:contributor> <dc:contributor>Chiriac, Roxana</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-02-17T07:56:57Z</dc:date> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/> <dcterms:abstract xml:lang="eng">This article proposes a parsimonious model to forecast large vectors of realized variances (RVar) by exploiting their common dynamics within a latent factor structure. Their long persistence is captured by aggregating latent factors with AR(1) dynamics. The model has obvious advantages over standard autoregressive models not only in terms of parametrization, but also in terms of efficiency, when increasing the dimension of the vector, as it provides more information on the commonality of the series’ dynamics. The model easily accommodates further empirical features of RVars, such as conditional heteroskedasticity. For estimation purposes, we use the maximum likelihood method based on Kalman filter and the efficient method of moments, both being easy to implement and providing accurate estimates. Our empirical illustration on real data shows that the model we propose often outperforms standard models, most of which are, for vectors of RVar series, only implementable under heavy parametric restrictions.</dcterms:abstract> <dc:language>eng</dc:language> <dc:rights>terms-of-use</dc:rights> </rdf:Description> </rdf:RDF>