Publikation:

A Latent Factor Model for Forecasting Realized Variances

Lade...
Vorschaubild

Dateien

Calzolari_2-o0xzt8r9rhci7.pdf
Calzolari_2-o0xzt8r9rhci7.pdfGröße: 1.29 MBDownloads: 60

Datum

2021

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Financial Econometrics. Oxford University Press. 2021, 19(5), pp. 860-909. ISSN 1479-8409. eISSN 1479-8417. Available under: doi: 10.1093/jjfinec/nbz036

Zusammenfassung

This article proposes a parsimonious model to forecast large vectors of realized variances (RVar) by exploiting their common dynamics within a latent factor structure. Their long persistence is captured by aggregating latent factors with AR(1) dynamics. The model has obvious advantages over standard autoregressive models not only in terms of parametrization, but also in terms of efficiency, when increasing the dimension of the vector, as it provides more information on the commonality of the series’ dynamics. The model easily accommodates further empirical features of RVars, such as conditional heteroskedasticity. For estimation purposes, we use the maximum likelihood method based on Kalman filter and the efficient method of moments, both being easy to implement and providing accurate estimates. Our empirical illustration on real data shows that the model we propose often outperforms standard models, most of which are, for vectors of RVar series, only implementable under heavy parametric restrictions.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
330 Wirtschaft

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690CALZOLARI, Giorgio, Roxana CHIRIAC, Aygul ZAGIDULLINA, 2021. A Latent Factor Model for Forecasting Realized Variances. In: Journal of Financial Econometrics. Oxford University Press. 2021, 19(5), pp. 860-909. ISSN 1479-8409. eISSN 1479-8417. Available under: doi: 10.1093/jjfinec/nbz036
BibTex
@article{Calzolari2021Laten-48653,
  year={2021},
  doi={10.1093/jjfinec/nbz036},
  title={A Latent Factor Model for Forecasting Realized Variances},
  number={5},
  volume={19},
  issn={1479-8409},
  journal={Journal of Financial Econometrics},
  pages={860--909},
  author={Calzolari, Giorgio and Chiriac, Roxana and Zagidullina, Aygul}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/48653">
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/48653/1/Calzolari_2-o0xzt8r9rhci7.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-02-17T07:56:57Z</dcterms:available>
    <dc:creator>Calzolari, Giorgio</dc:creator>
    <dcterms:title>A Latent Factor Model for Forecasting Realized Variances</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/48653/1/Calzolari_2-o0xzt8r9rhci7.pdf"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>2021</dcterms:issued>
    <dc:creator>Zagidullina, Aygul</dc:creator>
    <dc:contributor>Zagidullina, Aygul</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/48653"/>
    <dc:creator>Chiriac, Roxana</dc:creator>
    <dc:contributor>Calzolari, Giorgio</dc:contributor>
    <dc:contributor>Chiriac, Roxana</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-02-17T07:56:57Z</dc:date>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <dcterms:abstract xml:lang="eng">This article proposes a parsimonious model to forecast large vectors of realized variances (RVar) by exploiting their common dynamics within a latent factor structure. Their long persistence is captured by aggregating latent factors with AR(1) dynamics. The model has obvious advantages over standard autoregressive models not only in terms of parametrization, but also in terms of efficiency, when increasing the dimension of the vector, as it provides more information on the commonality of the series’ dynamics. The model easily accommodates further empirical features of RVars, such as conditional heteroskedasticity. For estimation purposes, we use the maximum likelihood method based on Kalman filter and the efficient method of moments, both being easy to implement and providing accurate estimates. Our empirical illustration on real data shows that the model we propose often outperforms standard models, most of which are, for vectors of RVar series, only implementable under heavy parametric restrictions.</dcterms:abstract>
    <dc:language>eng</dc:language>
    <dc:rights>terms-of-use</dc:rights>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen