Publikation: Phosphorylation and nitration levels of photosynthetic proteins are conversely regulated by light stress
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Using a label-free mass spectrometric approach, we investigated light-induced changes in the distribution of phosphorylated and nitrated proteins within subpopulations of native photosynthetic complexes in the thylakoid membrane of Arabidopsis thaliana leaves adapted to growth light (GL) and subsequently exposed to high light (HL). Eight protein phosphorylation sites were identified in photosystem II (PSII) and the phosphorylation level of seven was regulated by HL as determined based on peak areas from ion chromatograms of phosphorylated and non-phosphorylated peptides. Although the phosphorylation of PSII proteins was reported in the past, we demonstrated for the first time that two minor antenna LHCB4 isoforms are alternately phosphorylated under GL and HL conditions in PSII monomers, dimers and supercomplexes. A role of LHCB4 phosphorylation in state transition and monomerization of PSII under HL conditions is proposed. We determined changes in the nitration level of 23 tyrosine residues in five photosystem I (PSI) and nine PSII proteins and demonstrated for the majority of them a lower nitration level in PSI and PSII complexes and supercomplexes under HL conditions, as compared to GL. In contrast, the nitration level significantly increased in assembled/disassembled PSI and PSII subcomplexes under HL conditions. A possible role of nitration in (1) monomerization of LHCB1-3 trimers under HL conditions (2) binding properties of ferredoxin-NADP+ oxidoreductase to photosystem I, and (3) PSII photodamage and repair cycle, is discussed. Based on these data, we propose that the conversely regulated phosphorylation and nitration levels regulate the stability and turnover of photosynthetic complexes under HL conditions.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
GALETSKIY, Dmitry, Jens LOHSCHEIDER, Alexey S. KONONIKHIN, Igor A. POPOV, Eugene N. NIKOLAEV, Iwona ADAMSKA, 2011. Phosphorylation and nitration levels of photosynthetic proteins are conversely regulated by light stress. In: Plant Molecular Biology. 2011, 77(4-5), pp. 461-473. ISSN 0167-4412. eISSN 1573-5028. Available under: doi: 10.1007/s11103-011-9824-7BibTex
@article{Galetskiy2011-11Phosp-18973, year={2011}, doi={10.1007/s11103-011-9824-7}, title={Phosphorylation and nitration levels of photosynthetic proteins are conversely regulated by light stress}, number={4-5}, volume={77}, issn={0167-4412}, journal={Plant Molecular Biology}, pages={461--473}, author={Galetskiy, Dmitry and Lohscheider, Jens and Kononikhin, Alexey S. and Popov, Igor A. and Nikolaev, Eugene N. and Adamska, Iwona} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/18973"> <dcterms:abstract xml:lang="eng">Using a label-free mass spectrometric approach, we investigated light-induced changes in the distribution of phosphorylated and nitrated proteins within subpopulations of native photosynthetic complexes in the thylakoid membrane of Arabidopsis thaliana leaves adapted to growth light (GL) and subsequently exposed to high light (HL). Eight protein phosphorylation sites were identified in photosystem II (PSII) and the phosphorylation level of seven was regulated by HL as determined based on peak areas from ion chromatograms of phosphorylated and non-phosphorylated peptides. Although the phosphorylation of PSII proteins was reported in the past, we demonstrated for the first time that two minor antenna LHCB4 isoforms are alternately phosphorylated under GL and HL conditions in PSII monomers, dimers and supercomplexes. A role of LHCB4 phosphorylation in state transition and monomerization of PSII under HL conditions is proposed. We determined changes in the nitration level of 23 tyrosine residues in five photosystem I (PSI) and nine PSII proteins and demonstrated for the majority of them a lower nitration level in PSI and PSII complexes and supercomplexes under HL conditions, as compared to GL. In contrast, the nitration level significantly increased in assembled/disassembled PSI and PSII subcomplexes under HL conditions. A possible role of nitration in (1) monomerization of LHCB1-3 trimers under HL conditions (2) binding properties of ferredoxin-NADP+ oxidoreductase to photosystem I, and (3) PSII photodamage and repair cycle, is discussed. Based on these data, we propose that the conversely regulated phosphorylation and nitration levels regulate the stability and turnover of photosynthetic complexes under HL conditions.</dcterms:abstract> <dc:creator>Galetskiy, Dmitry</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:issued>2011-11</dcterms:issued> <dcterms:bibliographicCitation>Publ. in: Plant Molecular Biology ; 77 (2011), 4/5. - pp. 461-473</dcterms:bibliographicCitation> <dc:rights>terms-of-use</dc:rights> <dc:creator>Nikolaev, Eugene N.</dc:creator> <dc:creator>Lohscheider, Jens</dc:creator> <dc:contributor>Adamska, Iwona</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:contributor>Galetskiy, Dmitry</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-04-12T05:40:06Z</dc:date> <dc:creator>Popov, Igor A.</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/18973"/> <dcterms:title>Phosphorylation and nitration levels of photosynthetic proteins are conversely regulated by light stress</dcterms:title> <dc:contributor>Lohscheider, Jens</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Kononikhin, Alexey S.</dc:creator> <dc:contributor>Kononikhin, Alexey S.</dc:contributor> <dc:contributor>Nikolaev, Eugene N.</dc:contributor> <dc:creator>Adamska, Iwona</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:language>eng</dc:language> <dc:contributor>Popov, Igor A.</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-04-12T05:40:06Z</dcterms:available> </rdf:Description> </rdf:RDF>