Publikation: Palettailor : Discriminable Colorization for Categorical Data
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We present an integrated approach for creating and assigning color palettes to different visualizations such as multi-class scatterplots, line, and bar charts. While other methods separate the creation of colors from their assignment, our approach takes data characteristics into account to produce color palettes, which are then assigned in a way that fosters better visual discrimination of classes. To do so, we use a customized optimization based on simulated annealing to maximize the combination of three carefully designed color scoring functions: point distinctness, name difference, and color discrimination. We compare our approach to state-of-the-art palettes with a controlled user study for scatterplots and line charts, furthermore we performed a case study. Our results show that Palettailor, as a fully-automated approach, generates color palettes with a higher discrimination quality than existing approaches. The efficiency of our optimization allows us also to incorporate user modifications into the color selection process.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
LU, Kecheng, Mi FENG, Xin CHEN, Michael SEDLMAIR, Oliver DEUSSEN, Dani LISCHINSKI, Zhanglin CHENG, Yunhai WANG, 2021. Palettailor : Discriminable Colorization for Categorical Data. In: IEEE Transactions on Visualization and Computer Graphics. IEEE. 2021, 27(2), pp. 475-484. ISSN 1077-2626. eISSN 1941-0506. Available under: doi: 10.1109/TVCG.2020.3030406BibTex
@article{Lu2021-02Palet-52939, year={2021}, doi={10.1109/TVCG.2020.3030406}, title={Palettailor : Discriminable Colorization for Categorical Data}, number={2}, volume={27}, issn={1077-2626}, journal={IEEE Transactions on Visualization and Computer Graphics}, pages={475--484}, author={Lu, Kecheng and Feng, Mi and Chen, Xin and Sedlmair, Michael and Deussen, Oliver and Lischinski, Dani and Cheng, Zhanglin and Wang, Yunhai} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52939"> <dc:contributor>Feng, Mi</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dc:creator>Cheng, Zhanglin</dc:creator> <dc:creator>Feng, Mi</dc:creator> <dc:contributor>Wang, Yunhai</dc:contributor> <dc:contributor>Cheng, Zhanglin</dc:contributor> <dc:contributor>Chen, Xin</dc:contributor> <dc:creator>Lu, Kecheng</dc:creator> <dc:creator>Lischinski, Dani</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52939"/> <dc:contributor>Deussen, Oliver</dc:contributor> <dc:contributor>Lu, Kecheng</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-02-19T12:33:40Z</dc:date> <dc:contributor>Lischinski, Dani</dc:contributor> <dc:creator>Wang, Yunhai</dc:creator> <dc:creator>Sedlmair, Michael</dc:creator> <dc:contributor>Sedlmair, Michael</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Chen, Xin</dc:creator> <dcterms:title>Palettailor : Discriminable Colorization for Categorical Data</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Deussen, Oliver</dc:creator> <dc:language>eng</dc:language> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-02-19T12:33:40Z</dcterms:available> <dcterms:issued>2021-02</dcterms:issued> <dcterms:abstract xml:lang="eng">We present an integrated approach for creating and assigning color palettes to different visualizations such as multi-class scatterplots, line, and bar charts. While other methods separate the creation of colors from their assignment, our approach takes data characteristics into account to produce color palettes, which are then assigned in a way that fosters better visual discrimination of classes. To do so, we use a customized optimization based on simulated annealing to maximize the combination of three carefully designed color scoring functions: point distinctness, name difference, and color discrimination. We compare our approach to state-of-the-art palettes with a controlled user study for scatterplots and line charts, furthermore we performed a case study. Our results show that Palettailor, as a fully-automated approach, generates color palettes with a higher discrimination quality than existing approaches. The efficiency of our optimization allows us also to incorporate user modifications into the color selection process.</dcterms:abstract> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> </rdf:Description> </rdf:RDF>