Publikation:

Palettailor : Discriminable Colorization for Categorical Data

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2021

Autor:innen

Lu, Kecheng
Feng, Mi
Chen, Xin
Sedlmair, Michael
Lischinski, Dani
Cheng, Zhanglin
Wang, Yunhai

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

IEEE Transactions on Visualization and Computer Graphics. IEEE. 2021, 27(2), pp. 475-484. ISSN 1077-2626. eISSN 1941-0506. Available under: doi: 10.1109/TVCG.2020.3030406

Zusammenfassung

We present an integrated approach for creating and assigning color palettes to different visualizations such as multi-class scatterplots, line, and bar charts. While other methods separate the creation of colors from their assignment, our approach takes data characteristics into account to produce color palettes, which are then assigned in a way that fosters better visual discrimination of classes. To do so, we use a customized optimization based on simulated annealing to maximize the combination of three carefully designed color scoring functions: point distinctness, name difference, and color discrimination. We compare our approach to state-of-the-art palettes with a controlled user study for scatterplots and line charts, furthermore we performed a case study. Our results show that Palettailor, as a fully-automated approach, generates color palettes with a higher discrimination quality than existing approaches. The efficiency of our optimization allows us also to incorporate user modifications into the color selection process.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690LU, Kecheng, Mi FENG, Xin CHEN, Michael SEDLMAIR, Oliver DEUSSEN, Dani LISCHINSKI, Zhanglin CHENG, Yunhai WANG, 2021. Palettailor : Discriminable Colorization for Categorical Data. In: IEEE Transactions on Visualization and Computer Graphics. IEEE. 2021, 27(2), pp. 475-484. ISSN 1077-2626. eISSN 1941-0506. Available under: doi: 10.1109/TVCG.2020.3030406
BibTex
@article{Lu2021-02Palet-52939,
  year={2021},
  doi={10.1109/TVCG.2020.3030406},
  title={Palettailor : Discriminable Colorization for Categorical Data},
  number={2},
  volume={27},
  issn={1077-2626},
  journal={IEEE Transactions on Visualization and Computer Graphics},
  pages={475--484},
  author={Lu, Kecheng and Feng, Mi and Chen, Xin and Sedlmair, Michael and Deussen, Oliver and Lischinski, Dani and Cheng, Zhanglin and Wang, Yunhai}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52939">
    <dc:contributor>Feng, Mi</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Cheng, Zhanglin</dc:creator>
    <dc:creator>Feng, Mi</dc:creator>
    <dc:contributor>Wang, Yunhai</dc:contributor>
    <dc:contributor>Cheng, Zhanglin</dc:contributor>
    <dc:contributor>Chen, Xin</dc:contributor>
    <dc:creator>Lu, Kecheng</dc:creator>
    <dc:creator>Lischinski, Dani</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52939"/>
    <dc:contributor>Deussen, Oliver</dc:contributor>
    <dc:contributor>Lu, Kecheng</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-02-19T12:33:40Z</dc:date>
    <dc:contributor>Lischinski, Dani</dc:contributor>
    <dc:creator>Wang, Yunhai</dc:creator>
    <dc:creator>Sedlmair, Michael</dc:creator>
    <dc:contributor>Sedlmair, Michael</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Chen, Xin</dc:creator>
    <dcterms:title>Palettailor : Discriminable Colorization for Categorical Data</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Deussen, Oliver</dc:creator>
    <dc:language>eng</dc:language>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-02-19T12:33:40Z</dcterms:available>
    <dcterms:issued>2021-02</dcterms:issued>
    <dcterms:abstract xml:lang="eng">We present an integrated approach for creating and assigning color palettes to different visualizations such as multi-class scatterplots, line, and bar charts. While other methods separate the creation of colors from their assignment, our approach takes data characteristics into account to produce color palettes, which are then assigned in a way that fosters better visual discrimination of classes. To do so, we use a customized optimization based on simulated annealing to maximize the combination of three carefully designed color scoring functions: point distinctness, name difference, and color discrimination. We compare our approach to state-of-the-art palettes with a controlled user study for scatterplots and line charts, furthermore we performed a case study. Our results show that Palettailor, as a fully-automated approach, generates color palettes with a higher discrimination quality than existing approaches. The efficiency of our optimization allows us also to incorporate user modifications into the color selection process.</dcterms:abstract>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen