Publikation:

Human DNA Polymerase beta Mutations Allowing Efficient Abasic Site Bypass

Lade...
Vorschaubild

Dateien

J. Biol. Chem.-2010.pdf
J. Biol. Chem.-2010.pdfGröße: 1.62 MBDownloads: 915

Datum

2011

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Biological Chemistry. 2011, 286(5), pp. 4011-4020. ISSN 0021-9258. eISSN 1083-351X. Available under: doi: 10.1074/jbc.M110.176826

Zusammenfassung

The DNA of every cell in the human body gets damaged more than 50,000 times a day. The most frequent damages are abasic sites. This kind of damage blocks proceeding DNA synthesis by several DNA polymerases that are involved in DNA replication and repair. The mechanistic basis for the incapability of these DNA polymerases to bypass abasic sites is not clarified. To gain insights into the mechanistic basis, we intended to identify amino acid residues that govern for the pausing of DNA polymerase β when incorporating a nucleotide opposite to abasic sites. Human DNA polymerase β was chosen because it is a well characterized DNA polymerase and serves as model enzyme for studies of DNA polymerase mechanisms. Moreover, it acts as the main gap-filling enzyme in base excision repair, and human tumor studies suggest a link between DNA polymerase β and cancer. In this study we employed high throughput screening of a library of more than 11,000 human DNA polymerase β variants. We identified two mutants that have increased ability to incorporate a nucleotide opposite to an abasic site. We found that the substitutions E232K and T233I promote incorporation opposite the lesion. In addition to this feature, the variants have an increased activity and a lower fidelity when processing nondamaged DNA. The mutations described in this work are located in well characterized regions but have not been reported before. A crystallographic structure of one of the mutants was obtained, providing structural insights.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

DNA Damage, DNA Enzymes, DNA Polymerase, DNA-Protein Interaction, DNA Repair, DNA Replication

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690GIESEKING, Sonja, Konrad BERGEN, Fancesca Di PASQUALE, Kay DIEDERICHS, Wolfram WELTE, Andreas MARX, 2011. Human DNA Polymerase beta Mutations Allowing Efficient Abasic Site Bypass. In: Journal of Biological Chemistry. 2011, 286(5), pp. 4011-4020. ISSN 0021-9258. eISSN 1083-351X. Available under: doi: 10.1074/jbc.M110.176826
BibTex
@article{Gieseking2011-02-04Human-13555,
  year={2011},
  doi={10.1074/jbc.M110.176826},
  title={Human DNA Polymerase beta Mutations Allowing Efficient Abasic Site Bypass},
  number={5},
  volume={286},
  issn={0021-9258},
  journal={Journal of Biological Chemistry},
  pages={4011--4020},
  author={Gieseking, Sonja and Bergen, Konrad and Pasquale, Fancesca Di and Diederichs, Kay and Welte, Wolfram and Marx, Andreas}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/13555">
    <dc:contributor>Marx, Andreas</dc:contributor>
    <dc:creator>Diederichs, Kay</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:title>Human DNA Polymerase beta Mutations Allowing Efficient Abasic Site Bypass</dcterms:title>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/13555"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/13555/2/J.%20Biol.%20Chem.-2010.pdf"/>
    <dc:contributor>Welte, Wolfram</dc:contributor>
    <dc:creator>Gieseking, Sonja</dc:creator>
    <dcterms:bibliographicCitation>First publ. in: The Journal of Biological Chemistry 286 (2011), 5, pp. 4011-4020, doi: 10.1074/jbc.M110.176826</dcterms:bibliographicCitation>
    <dcterms:abstract xml:lang="eng">The DNA of every cell in the human body gets damaged more than 50,000 times a day. The most frequent damages are abasic sites. This kind of damage blocks proceeding DNA synthesis by several DNA polymerases that are involved in DNA replication and repair. The mechanistic basis for the incapability of these DNA polymerases to bypass abasic sites is not clarified. To gain insights into the mechanistic basis, we intended to identify amino acid residues that govern for the pausing of DNA polymerase β when incorporating a nucleotide opposite to abasic sites. Human DNA polymerase β was chosen because it is a well characterized DNA polymerase and serves as model enzyme for studies of DNA polymerase mechanisms. Moreover, it acts as the main gap-filling enzyme in base excision repair, and human tumor studies suggest a link between DNA polymerase β and cancer. In this study we employed high throughput screening of a library of more than 11,000 human DNA polymerase β variants. We identified two mutants that have increased ability to incorporate a nucleotide opposite to an abasic site. We found that the substitutions E232K and T233I promote incorporation opposite the lesion. In addition to this feature, the variants have an increased activity and a lower fidelity when processing nondamaged DNA. The mutations described in this work are located in well characterized regions but have not been reported before. A crystallographic structure of one of the mutants was obtained, providing structural insights.</dcterms:abstract>
    <dc:creator>Bergen, Konrad</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-02-29T23:25:05Z</dcterms:available>
    <dc:rights>terms-of-use</dc:rights>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:contributor>Diederichs, Kay</dc:contributor>
    <dc:creator>Welte, Wolfram</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/13555/2/J.%20Biol.%20Chem.-2010.pdf"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:issued>2011-02-04</dcterms:issued>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-06-09T07:33:06Z</dc:date>
    <dc:creator>Marx, Andreas</dc:creator>
    <dc:contributor>Bergen, Konrad</dc:contributor>
    <dc:contributor>Pasquale, Fancesca Di</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Pasquale, Fancesca Di</dc:creator>
    <dc:contributor>Gieseking, Sonja</dc:contributor>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen