Publikation:

Bounds on complexity of matrix multiplication away from Coppersmith–Winograd tensors

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2022

Autor:innen

Homs, Roser
Jelisiejew, Joachim
Seynnaeve, Tim

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Pure and Applied Algebra. Elsevier Science. 2022, 226(12), 107142. ISSN 0022-4049. eISSN 1873-1376. Available under: doi: 10.1016/j.jpaa.2022.107142

Zusammenfassung

We present three families of minimal border rank tensors: they come from highest weight vectors, smoothable algebras, and monomial algebras. We analyse them using Strassen's laser method and obtain an upper bound 2.431 on ω. We also explain how in certain monomial cases using the laser method directly is less profitable than first degenerating. Our results form possible paths in the search for valuable tensors for the laser method away from Coppersmith-Winograd tensors.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690HOMS, Roser, Joachim JELISIEJEW, Mateusz MICHALEK, Tim SEYNNAEVE, 2022. Bounds on complexity of matrix multiplication away from Coppersmith–Winograd tensors. In: Journal of Pure and Applied Algebra. Elsevier Science. 2022, 226(12), 107142. ISSN 0022-4049. eISSN 1873-1376. Available under: doi: 10.1016/j.jpaa.2022.107142
BibTex
@article{Homs2022-12Bound-57625,
  year={2022},
  doi={10.1016/j.jpaa.2022.107142},
  title={Bounds on complexity of matrix multiplication away from Coppersmith–Winograd tensors},
  number={12},
  volume={226},
  issn={0022-4049},
  journal={Journal of Pure and Applied Algebra},
  author={Homs, Roser and Jelisiejew, Joachim and Michalek, Mateusz and Seynnaeve, Tim},
  note={Article Number: 107142}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/57625">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-05-23T12:18:47Z</dcterms:available>
    <dc:creator>Michalek, Mateusz</dc:creator>
    <dcterms:title>Bounds on complexity of matrix multiplication away from Coppersmith–Winograd tensors</dcterms:title>
    <dc:contributor>Homs, Roser</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-05-23T12:18:47Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Michalek, Mateusz</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/57625"/>
    <dc:contributor>Jelisiejew, Joachim</dc:contributor>
    <dc:creator>Jelisiejew, Joachim</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Seynnaeve, Tim</dc:contributor>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Homs, Roser</dc:creator>
    <dcterms:issued>2022-12</dcterms:issued>
    <dc:creator>Seynnaeve, Tim</dc:creator>
    <dcterms:abstract xml:lang="eng">We present three families of minimal border rank tensors: they come from highest weight vectors, smoothable algebras, and monomial algebras. We analyse them using Strassen's laser method and obtain an upper bound 2.431 on ω. We also explain how in certain monomial cases using the laser method directly is less profitable than first degenerating. Our results form possible paths in the search for valuable tensors for the laser method away from Coppersmith-Winograd tensors.</dcterms:abstract>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen