Publikation: Bounds on complexity of matrix multiplication away from Coppersmith–Winograd tensors
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2022
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Journal of Pure and Applied Algebra. Elsevier Science. 2022, 226(12), 107142. ISSN 0022-4049. eISSN 1873-1376. Available under: doi: 10.1016/j.jpaa.2022.107142
Zusammenfassung
We present three families of minimal border rank tensors: they come from highest weight vectors, smoothable algebras, and monomial algebras. We analyse them using Strassen's laser method and obtain an upper bound 2.431 on ω. We also explain how in certain monomial cases using the laser method directly is less profitable than first degenerating. Our results form possible paths in the search for valuable tensors for the laser method away from Coppersmith-Winograd tensors.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
HOMS, Roser, Joachim JELISIEJEW, Mateusz MICHALEK, Tim SEYNNAEVE, 2022. Bounds on complexity of matrix multiplication away from Coppersmith–Winograd tensors. In: Journal of Pure and Applied Algebra. Elsevier Science. 2022, 226(12), 107142. ISSN 0022-4049. eISSN 1873-1376. Available under: doi: 10.1016/j.jpaa.2022.107142BibTex
@article{Homs2022-12Bound-57625, year={2022}, doi={10.1016/j.jpaa.2022.107142}, title={Bounds on complexity of matrix multiplication away from Coppersmith–Winograd tensors}, number={12}, volume={226}, issn={0022-4049}, journal={Journal of Pure and Applied Algebra}, author={Homs, Roser and Jelisiejew, Joachim and Michalek, Mateusz and Seynnaeve, Tim}, note={Article Number: 107142} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/57625"> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-05-23T12:18:47Z</dcterms:available> <dc:creator>Michalek, Mateusz</dc:creator> <dcterms:title>Bounds on complexity of matrix multiplication away from Coppersmith–Winograd tensors</dcterms:title> <dc:contributor>Homs, Roser</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-05-23T12:18:47Z</dc:date> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Michalek, Mateusz</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/57625"/> <dc:contributor>Jelisiejew, Joachim</dc:contributor> <dc:creator>Jelisiejew, Joachim</dc:creator> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Seynnaeve, Tim</dc:contributor> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Homs, Roser</dc:creator> <dcterms:issued>2022-12</dcterms:issued> <dc:creator>Seynnaeve, Tim</dc:creator> <dcterms:abstract xml:lang="eng">We present three families of minimal border rank tensors: they come from highest weight vectors, smoothable algebras, and monomial algebras. We analyse them using Strassen's laser method and obtain an upper bound 2.431 on ω. We also explain how in certain monomial cases using the laser method directly is less profitable than first degenerating. Our results form possible paths in the search for valuable tensors for the laser method away from Coppersmith-Winograd tensors.</dcterms:abstract> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja