Publikation:

Machine learning reveals cryptic dialects that explain mate choice in a songbird

Lade...
Vorschaubild

Dateien

Wang_2-nlzpdr7he9461.pdf
Wang_2-nlzpdr7he9461.pdfGröße: 1.82 MBDownloads: 92

Datum

2022

Autor:innen

Wang, Daiping
Forstmeier, Wolfgang
Martin, Katrin
Pei, Yifan
Klarevas-Irby, James A.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Nature Communications. Nature Publishing Group. 2022, 13, 1630. eISSN 2041-1723. Available under: doi: 10.1038/s41467-022-28881-w

Zusammenfassung

Culturally transmitted communication signals – such as human language or bird song – can change over time through cultural drift, and the resulting dialects may consequently enhance the separation of populations. However, the emergence of song dialects has been considered unlikely when songs are highly individual-specific, as in the zebra finch (Taeniopygia guttata). Here we show that machine learning can nevertheless distinguish the songs from multiple captive zebra finch populations with remarkable precision, and that ‘cryptic song dialects’ predict strong assortative mating in this species. We examine mating patterns across three consecutive generations using captive populations that have evolved in isolation for about 100 generations. We cross-fostered eggs within and between these populations and used an automated barcode tracking system to quantify social interactions. We find that females preferentially pair with males whose song resembles that of the females’ adolescent peers. Our study shows evidence that in zebra finches, a model species for song learning, individuals are sensitive to differences in song that have hitherto remained unnoticed by researchers.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690WANG, Daiping, Wolfgang FORSTMEIER, Damien R. FARINE, Adriana A. MALDONADO CHAPARRO, Katrin MARTIN, Yifan PEI, Gustavo ALARCON NIETO, James A. KLAREVAS-IRBY, Shouwen MA, Lucy M. APLIN, Bart KEMPENAERS, 2022. Machine learning reveals cryptic dialects that explain mate choice in a songbird. In: Nature Communications. Nature Publishing Group. 2022, 13, 1630. eISSN 2041-1723. Available under: doi: 10.1038/s41467-022-28881-w
BibTex
@article{Wang2022-03-28Machi-57174,
  year={2022},
  doi={10.1038/s41467-022-28881-w},
  title={Machine learning reveals cryptic dialects that explain mate choice in a songbird},
  volume={13},
  journal={Nature Communications},
  author={Wang, Daiping and Forstmeier, Wolfgang and Farine, Damien R. and Maldonado Chaparro, Adriana A. and Martin, Katrin and Pei, Yifan and Alarcon Nieto, Gustavo and Klarevas-Irby, James A. and Ma, Shouwen and Aplin, Lucy M. and Kempenaers, Bart},
  note={Article Number: 1630}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/57174">
    <dc:creator>Martin, Katrin</dc:creator>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:contributor>Kempenaers, Bart</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/57174"/>
    <dc:contributor>Aplin, Lucy M.</dc:contributor>
    <dc:creator>Kempenaers, Bart</dc:creator>
    <dc:creator>Ma, Shouwen</dc:creator>
    <dc:creator>Wang, Daiping</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57174/1/Wang_2-nlzpdr7he9461.pdf"/>
    <dc:creator>Pei, Yifan</dc:creator>
    <dc:language>eng</dc:language>
    <dc:creator>Forstmeier, Wolfgang</dc:creator>
    <dc:creator>Aplin, Lucy M.</dc:creator>
    <dc:creator>Alarcon Nieto, Gustavo</dc:creator>
    <dc:contributor>Wang, Daiping</dc:contributor>
    <dc:contributor>Forstmeier, Wolfgang</dc:contributor>
    <dc:contributor>Pei, Yifan</dc:contributor>
    <dc:contributor>Farine, Damien R.</dc:contributor>
    <dc:contributor>Alarcon Nieto, Gustavo</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-04-05T11:35:57Z</dc:date>
    <dcterms:title>Machine learning reveals cryptic dialects that explain mate choice in a songbird</dcterms:title>
    <dc:creator>Farine, Damien R.</dc:creator>
    <dcterms:abstract xml:lang="eng">Culturally transmitted communication signals – such as human language or bird song – can change over time through cultural drift, and the resulting dialects may consequently enhance the separation of populations. However, the emergence of song dialects has been considered unlikely when songs are highly individual-specific, as in the zebra finch (Taeniopygia guttata). Here we show that machine learning can nevertheless distinguish the songs from multiple captive zebra finch populations with remarkable precision, and that ‘cryptic song dialects’ predict strong assortative mating in this species. We examine mating patterns across three consecutive generations using captive populations that have evolved in isolation for about 100 generations. We cross-fostered eggs within and between these populations and used an automated barcode tracking system to quantify social interactions. We find that females preferentially pair with males whose song resembles that of the females’ adolescent peers. Our study shows evidence that in zebra finches, a model species for song learning, individuals are sensitive to differences in song that have hitherto remained unnoticed by researchers.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-04-05T11:35:57Z</dcterms:available>
    <dc:contributor>Ma, Shouwen</dc:contributor>
    <dc:contributor>Klarevas-Irby, James A.</dc:contributor>
    <dc:contributor>Martin, Katrin</dc:contributor>
    <dc:creator>Maldonado Chaparro, Adriana A.</dc:creator>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Klarevas-Irby, James A.</dc:creator>
    <dc:contributor>Maldonado Chaparro, Adriana A.</dc:contributor>
    <dcterms:issued>2022-03-28</dcterms:issued>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57174/1/Wang_2-nlzpdr7he9461.pdf"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Ja
Diese Publikation teilen