Publikation:

Autocompletion of repetitive stroking with image guidance

Lade...
Vorschaubild

Dateien

Chen_2-nk0vq634s3384.pdf
Chen_2-nk0vq634s3384.pdfGröße: 11.52 MBDownloads: 24

Datum

2023

Autor:innen

Chen, Yilan
Fu, Hongbo

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Deutsche Forschungsgemeinschaft (DFG): 251654672

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Computational Visual Media. Springer. 2023, 9(3), pp. 581-596. ISSN 2096-0433. eISSN 2096-0662. Available under: doi: 10.1007/s41095-022-0288-2

Zusammenfassung

Image-guided drawing can compensate for a lack of skill but often requires a significant number of repetitive strokes to create textures. Existing automatic stroke synthesis methods are usually limited to predefined styles or require indirect manipulation that may break the spontaneous flow of drawing. We present an assisted drawing system to autocomplete repetitive short strokes during a user’s normal drawing process. Users draw over a reference image as usual; at the same time, our system silently analyzes the input strokes and the reference to infer strokes that follow the user’s input style when certain repetition is detected. Users can accept, modify, or ignore the system’s predictions and continue drawing, thus maintaining fluid control over drawing. Our key idea is to jointly analyze image regions and user input history to detect and predict repetition. The proposed system can effectively reduce the user’s workload when drawing repetitive short strokes, helping users to create results with rich patterns.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Artificial Intelligence

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690CHEN, Yilan, Kin Chung KWAN, Hongbo FU, 2023. Autocompletion of repetitive stroking with image guidance. In: Computational Visual Media. Springer. 2023, 9(3), pp. 581-596. ISSN 2096-0433. eISSN 2096-0662. Available under: doi: 10.1007/s41095-022-0288-2
BibTex
@article{Chen2023-03-08Autoc-66568,
  year={2023},
  doi={10.1007/s41095-022-0288-2},
  title={Autocompletion of repetitive stroking with image guidance},
  number={3},
  volume={9},
  issn={2096-0433},
  journal={Computational Visual Media},
  pages={581--596},
  author={Chen, Yilan and Kwan, Kin Chung and Fu, Hongbo}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/66568">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:language>eng</dc:language>
    <dcterms:title>Autocompletion of repetitive stroking with image guidance</dcterms:title>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/66568/1/Chen_2-nk0vq634s3384.pdf"/>
    <dc:creator>Fu, Hongbo</dc:creator>
    <dc:contributor>Chen, Yilan</dc:contributor>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:creator>Chen, Yilan</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/66568"/>
    <dcterms:abstract>Image-guided drawing can compensate for a lack of skill but often requires a significant number of repetitive strokes to create textures. Existing automatic stroke synthesis methods are usually limited to predefined styles or require indirect manipulation that may break the spontaneous flow of drawing. We present an assisted drawing system to autocomplete repetitive short strokes during a user’s normal drawing process. Users draw over a reference image as usual; at the same time, our system silently analyzes the input strokes and the reference to infer strokes that follow the user’s input style when certain repetition is detected. Users can accept, modify, or ignore the system’s predictions and continue drawing, thus maintaining fluid control over drawing. Our key idea is to jointly analyze image regions and user input history to detect and predict repetition. The proposed system can effectively reduce the user’s workload when drawing repetitive short strokes, helping users to create results with rich patterns.</dcterms:abstract>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/66568/1/Chen_2-nk0vq634s3384.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-04-13T07:59:04Z</dc:date>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-04-13T07:59:04Z</dcterms:available>
    <dc:contributor>Kwan, Kin Chung</dc:contributor>
    <dc:contributor>Fu, Hongbo</dc:contributor>
    <dc:creator>Kwan, Kin Chung</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>2023-03-08</dcterms:issued>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja
Diese Publikation teilen