Publikation: TF-IDuF : A Novel Term-Weighting Scheme for User Modeling based on Users’ Personal Document Collections
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
TF-IDF is one of the most popular term-weighting schemes, and is applied by search engines, recommender systems, and user modeling engines. With regard to user modeling and recommender systems, we see two shortcomings of TF-IDF. First, calculating IDF requires access to the document corpus from which recommendations are made. Such access is not always given in a user-modeling or recommender system. Second, TF-IDF ignores information from a user’s personal document collection, which could – so we hypothesize – enhance the user modeling process. In this paper, we introduce TF-IDuF as a term-weighting scheme that does not require access to the general document corpus and that considers information from the users’ personal document collections. We evaluated the effectiveness of TF-IDuF compared to TF-IDF and TF-Only and found that TF-IDF and TF-IDuF perform similarly (click-through rates (CTR) of 5.09% vs. 5.14%), and both are around 25% more effective than TF-Only (CTR of 4.06%) for recommending research papers. Consequently, we conclude that TF-IDuF could be a promising term-weighting scheme, especially when access to the document corpus for recommendations is not possible, and thus classic IDF cannot be computed. It is also notable that TF-IDuF and TF-IDF are not exclusive, so that both metrics may be combined to a more effective term-weighting scheme.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BEEL, Joeran, Stefan LANGER, Bela GIPP, 2017. TF-IDuF : A Novel Term-Weighting Scheme for User Modeling based on Users’ Personal Document Collections. iConference 2017 : March 22-25,2017, Wuhan, China : Effect, Expand, Evolve : Global Collaboration across the Information Community. Wuhan, China, 22. März 2017 - 25. März 2017. In: Proceedings of the iConference 2017, Wuhan, China, 2017. Urbana-Champaign: University of Illinois, 2017, pp. 452-459. Available under: doi: 10.9776/17217BibTex
@inproceedings{Beel2017TFIDu-41879, year={2017}, doi={10.9776/17217}, title={TF-IDuF : A Novel Term-Weighting Scheme for User Modeling based on Users’ Personal Document Collections}, url={http://hdl.handle.net/2142/96756}, publisher={University of Illinois}, address={Urbana-Champaign}, booktitle={Proceedings of the iConference 2017, Wuhan, China, 2017}, pages={452--459}, author={Beel, Joeran and Langer, Stefan and Gipp, Bela} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41879"> <dc:contributor>Langer, Stefan</dc:contributor> <dcterms:issued>2017</dcterms:issued> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/41879/1/Beel_2-nd5ei0v2m07d0.pdf"/> <dc:creator>Beel, Joeran</dc:creator> <dcterms:abstract xml:lang="eng">TF-IDF is one of the most popular term-weighting schemes, and is applied by search engines, recommender systems, and user modeling engines. With regard to user modeling and recommender systems, we see two shortcomings of TF-IDF. First, calculating IDF requires access to the document corpus from which recommendations are made. Such access is not always given in a user-modeling or recommender system. Second, TF-IDF ignores information from a user’s personal document collection, which could – so we hypothesize – enhance the user modeling process. In this paper, we introduce TF-IDuF as a term-weighting scheme that does not require access to the general document corpus and that considers information from the users’ personal document collections. We evaluated the effectiveness of TF-IDuF compared to TF-IDF and TF-Only and found that TF-IDF and TF-IDuF perform similarly (click-through rates (CTR) of 5.09% vs. 5.14%), and both are around 25% more effective than TF-Only (CTR of 4.06%) for recommending research papers. Consequently, we conclude that TF-IDuF could be a promising term-weighting scheme, especially when access to the document corpus for recommendations is not possible, and thus classic IDF cannot be computed. It is also notable that TF-IDuF and TF-IDF are not exclusive, so that both metrics may be combined to a more effective term-weighting scheme.</dcterms:abstract> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:rights>terms-of-use</dc:rights> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/41879/1/Beel_2-nd5ei0v2m07d0.pdf"/> <dc:contributor>Beel, Joeran</dc:contributor> <dc:creator>Gipp, Bela</dc:creator> <dc:creator>Langer, Stefan</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41879"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-03-21T11:18:08Z</dcterms:available> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Gipp, Bela</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-03-21T11:18:08Z</dc:date> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:title>TF-IDuF : A Novel Term-Weighting Scheme for User Modeling based on Users’ Personal Document Collections</dcterms:title> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> </rdf:Description> </rdf:RDF>