Publikation:

Media Bias Monitor : Quantifying Biases of Social Media News Outlets at Large-Scale

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2018

Autor:innen

Ribeiro, Filipe N.
Henrique, Lucas
Benevenuto, Fabricio
Chakraborty, Abhijnan
Babaei, Mahmoudreza
Gummadi, Krishna P.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

Twelfth International AAAI Conference on Web and Social Media. Palo Alto, California: AAAI Press, 2018, pp. 290-299. eISSN 2334-0770. ISBN 978-1-57735-798-8

Zusammenfassung

As Internet users increasingly rely on social media sites like Facebook and Twitter to receive news, they are faced with a bewildering number of news media choices. For example, thousands of Facebook pages today are registered and categorized as some form of news media outlets. Inferring the bias (or slant) of these media pages poses a difficult challenge for media watchdog organizations that traditionally rely on content analysis. In this paper, we explore a novel scalable methodology to accurately infer the biases of thousands of news sources on social media sites like Facebook and Twitter. Our key idea is to utilize their advertiser interfaces, that offer detailed insights into the demographics of the news source’s audience on the social media site. We show that the ideological (liberal or conservative) leaning of a news source can be accurately estimated by the extent to which liberals or conservatives are over-/under-represented among its audience. Additionally, we show how biases in a news source’s audience demographics, along the lines of race, gender, age, national identity, and income, can be used to infer more fine-grained biases of the source, such as social vs. economic vs. nationalistic conservatism. Finally, we demonstrate the scalability of our approach by building and publicly deploying a system, called "Media Bias Monitor", which makes the biases in audience demographics for over 20,000 news outlets on Facebook transparent to any Internet user.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

news media bias; social media; news news bias monitor; Facebook audience demographics

Konferenz

Twelfth International AAAI Conference on Web and Social Media, 25. Juni 2018 - 28. Juni 2018, Stanfod, California
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690RIBEIRO, Filipe N., Lucas HENRIQUE, Fabricio BENEVENUTO, Abhijnan CHAKRABORTY, Juhi KULSHRESTHA, Mahmoudreza BABAEI, Krishna P. GUMMADI, 2018. Media Bias Monitor : Quantifying Biases of Social Media News Outlets at Large-Scale. Twelfth International AAAI Conference on Web and Social Media. Stanfod, California, 25. Juni 2018 - 28. Juni 2018. In: Twelfth International AAAI Conference on Web and Social Media. Palo Alto, California: AAAI Press, 2018, pp. 290-299. eISSN 2334-0770. ISBN 978-1-57735-798-8
BibTex
@inproceedings{Ribeiro2018-06-15Media-53950,
  year={2018},
  title={Media Bias Monitor : Quantifying Biases of Social Media News Outlets at Large-Scale},
  url={https://aaai.org/ocs/index.php/ICWSM/ICWSM18/paper/view/17878},
  isbn={978-1-57735-798-8},
  publisher={AAAI Press},
  address={Palo Alto, California},
  booktitle={Twelfth International AAAI Conference on Web and Social Media},
  pages={290--299},
  author={Ribeiro, Filipe N. and Henrique, Lucas and Benevenuto, Fabricio and Chakraborty, Abhijnan and Kulshrestha, Juhi and Babaei, Mahmoudreza and Gummadi, Krishna P.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53950">
    <dc:contributor>Babaei, Mahmoudreza</dc:contributor>
    <dc:creator>Chakraborty, Abhijnan</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-06-10T13:30:31Z</dcterms:available>
    <dcterms:abstract xml:lang="eng">As Internet users increasingly rely on social media sites like Facebook and Twitter to receive news, they are faced with a bewildering number of news media choices. For example, thousands of Facebook pages today are registered and categorized as some form of news media outlets. Inferring the bias (or slant) of these media pages poses a difficult challenge for media watchdog organizations that traditionally rely on content analysis. In this paper, we explore a novel scalable methodology to accurately infer the biases of thousands of news sources on social media sites like Facebook and Twitter. Our key idea is to utilize their advertiser interfaces, that offer detailed insights into the demographics of the news source’s audience on the social media site. We show that the ideological (liberal or conservative) leaning of a news source can be accurately estimated by the extent to which liberals or conservatives are over-/under-represented among its audience. Additionally, we show how biases in a news source’s audience demographics, along the lines of race, gender, age, national identity, and income, can be used to infer more fine-grained biases of the source, such as social vs. economic vs. nationalistic conservatism. Finally, we demonstrate the scalability of our approach by building and publicly deploying a system, called "Media Bias Monitor", which makes the biases in audience demographics for over 20,000 news outlets on Facebook transparent to any Internet user.</dcterms:abstract>
    <dc:contributor>Chakraborty, Abhijnan</dc:contributor>
    <dc:creator>Kulshrestha, Juhi</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Kulshrestha, Juhi</dc:contributor>
    <dc:language>eng</dc:language>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dc:contributor>Gummadi, Krishna P.</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53950"/>
    <dc:creator>Ribeiro, Filipe N.</dc:creator>
    <dc:creator>Babaei, Mahmoudreza</dc:creator>
    <dc:creator>Gummadi, Krishna P.</dc:creator>
    <dc:creator>Benevenuto, Fabricio</dc:creator>
    <dc:contributor>Ribeiro, Filipe N.</dc:contributor>
    <dc:creator>Henrique, Lucas</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:title>Media Bias Monitor : Quantifying Biases of Social Media News Outlets at Large-Scale</dcterms:title>
    <dcterms:issued>2018-06-15</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dc:contributor>Henrique, Lucas</dc:contributor>
    <dc:contributor>Benevenuto, Fabricio</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-06-10T13:30:31Z</dc:date>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt

Prüfdatum der URL

2021-05-27

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen