Publikation: Media Bias Monitor : Quantifying Biases of Social Media News Outlets at Large-Scale
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
As Internet users increasingly rely on social media sites like Facebook and Twitter to receive news, they are faced with a bewildering number of news media choices. For example, thousands of Facebook pages today are registered and categorized as some form of news media outlets. Inferring the bias (or slant) of these media pages poses a difficult challenge for media watchdog organizations that traditionally rely on content analysis. In this paper, we explore a novel scalable methodology to accurately infer the biases of thousands of news sources on social media sites like Facebook and Twitter. Our key idea is to utilize their advertiser interfaces, that offer detailed insights into the demographics of the news source’s audience on the social media site. We show that the ideological (liberal or conservative) leaning of a news source can be accurately estimated by the extent to which liberals or conservatives are over-/under-represented among its audience. Additionally, we show how biases in a news source’s audience demographics, along the lines of race, gender, age, national identity, and income, can be used to infer more fine-grained biases of the source, such as social vs. economic vs. nationalistic conservatism. Finally, we demonstrate the scalability of our approach by building and publicly deploying a system, called "Media Bias Monitor", which makes the biases in audience demographics for over 20,000 news outlets on Facebook transparent to any Internet user.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
RIBEIRO, Filipe N., Lucas HENRIQUE, Fabricio BENEVENUTO, Abhijnan CHAKRABORTY, Juhi KULSHRESTHA, Mahmoudreza BABAEI, Krishna P. GUMMADI, 2018. Media Bias Monitor : Quantifying Biases of Social Media News Outlets at Large-Scale. Twelfth International AAAI Conference on Web and Social Media. Stanfod, California, 25. Juni 2018 - 28. Juni 2018. In: Twelfth International AAAI Conference on Web and Social Media. Palo Alto, California: AAAI Press, 2018, pp. 290-299. eISSN 2334-0770. ISBN 978-1-57735-798-8BibTex
@inproceedings{Ribeiro2018-06-15Media-53950, year={2018}, title={Media Bias Monitor : Quantifying Biases of Social Media News Outlets at Large-Scale}, url={https://aaai.org/ocs/index.php/ICWSM/ICWSM18/paper/view/17878}, isbn={978-1-57735-798-8}, publisher={AAAI Press}, address={Palo Alto, California}, booktitle={Twelfth International AAAI Conference on Web and Social Media}, pages={290--299}, author={Ribeiro, Filipe N. and Henrique, Lucas and Benevenuto, Fabricio and Chakraborty, Abhijnan and Kulshrestha, Juhi and Babaei, Mahmoudreza and Gummadi, Krishna P.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53950"> <dc:contributor>Babaei, Mahmoudreza</dc:contributor> <dc:creator>Chakraborty, Abhijnan</dc:creator> <dc:rights>terms-of-use</dc:rights> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-06-10T13:30:31Z</dcterms:available> <dcterms:abstract xml:lang="eng">As Internet users increasingly rely on social media sites like Facebook and Twitter to receive news, they are faced with a bewildering number of news media choices. For example, thousands of Facebook pages today are registered and categorized as some form of news media outlets. Inferring the bias (or slant) of these media pages poses a difficult challenge for media watchdog organizations that traditionally rely on content analysis. In this paper, we explore a novel scalable methodology to accurately infer the biases of thousands of news sources on social media sites like Facebook and Twitter. Our key idea is to utilize their advertiser interfaces, that offer detailed insights into the demographics of the news source’s audience on the social media site. We show that the ideological (liberal or conservative) leaning of a news source can be accurately estimated by the extent to which liberals or conservatives are over-/under-represented among its audience. Additionally, we show how biases in a news source’s audience demographics, along the lines of race, gender, age, national identity, and income, can be used to infer more fine-grained biases of the source, such as social vs. economic vs. nationalistic conservatism. Finally, we demonstrate the scalability of our approach by building and publicly deploying a system, called "Media Bias Monitor", which makes the biases in audience demographics for over 20,000 news outlets on Facebook transparent to any Internet user.</dcterms:abstract> <dc:contributor>Chakraborty, Abhijnan</dc:contributor> <dc:creator>Kulshrestha, Juhi</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Kulshrestha, Juhi</dc:contributor> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> <dc:contributor>Gummadi, Krishna P.</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53950"/> <dc:creator>Ribeiro, Filipe N.</dc:creator> <dc:creator>Babaei, Mahmoudreza</dc:creator> <dc:creator>Gummadi, Krishna P.</dc:creator> <dc:creator>Benevenuto, Fabricio</dc:creator> <dc:contributor>Ribeiro, Filipe N.</dc:contributor> <dc:creator>Henrique, Lucas</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:title>Media Bias Monitor : Quantifying Biases of Social Media News Outlets at Large-Scale</dcterms:title> <dcterms:issued>2018-06-15</dcterms:issued> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> <dc:contributor>Henrique, Lucas</dc:contributor> <dc:contributor>Benevenuto, Fabricio</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-06-10T13:30:31Z</dc:date> </rdf:Description> </rdf:RDF>