Publikation:

Automorphism Faithfulness Metrics for Symmetric Graph Drawings

Lade...
Vorschaubild

Dateien

Meidiana_2-nbs8sjarj8fu1.pdf
Meidiana_2-nbs8sjarj8fu1.pdfGröße: 2.04 MBDownloads: 26

Datum

2022

Autor:innen

Meidiana, Amyra
Hong, Seok-Hee
Eades, Peter

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

IEEE Transactions on Visualization and Computer Graphics. IEEE. ISSN 1077-2626. eISSN 1941-0506. Available under: doi: 10.1109/TVCG.2022.3229354

Zusammenfassung

In this paper, we present new quality metrics for symmetric graph drawing based on group theory. Roughly speaking, the new metrics are faithfulness metrics, i.e., they measure how faithfully a drawing of a graph displays the ground truth (i.e., geometric automorphisms) of the graph as symmetries. More specifically, we introduce two types of automorphism faithfulness metrics for displaying: (1) a single geometric automorphism as a symmetry (axial or rotational), and (2) a group of geometric automorphisms (cyclic or dihedral). We present algorithms to compute the automorphism faithfulness metrics in O(n log n) time. Moreover, we also present efficient algorithms to detect exact symmetries in a graph drawing. We then validate our automorphism faithfulness metrics using deformation experiments. Finally, we use the metrics to evaluate existing graph drawing algorithms to compare how faithfully they display geometric automorphisms of a graph as symmetries.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Graph drawing, Symmetry, Automorphism, Faithfulness metrics

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690MEIDIANA, Amyra, Seok-Hee HONG, Peter EADES, Daniel A. KEIM, 2022. Automorphism Faithfulness Metrics for Symmetric Graph Drawings. In: IEEE Transactions on Visualization and Computer Graphics. IEEE. ISSN 1077-2626. eISSN 1941-0506. Available under: doi: 10.1109/TVCG.2022.3229354
BibTex
@article{Meidiana2022Autom-59573,
  year={2022},
  doi={10.1109/TVCG.2022.3229354},
  title={Automorphism Faithfulness Metrics for Symmetric Graph Drawings},
  issn={1077-2626},
  journal={IEEE Transactions on Visualization and Computer Graphics},
  author={Meidiana, Amyra and Hong, Seok-Hee and Eades, Peter and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59573">
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Hong, Seok-Hee</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59573"/>
    <dc:creator>Meidiana, Amyra</dc:creator>
    <dc:language>eng</dc:language>
    <dc:contributor>Eades, Peter</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Hong, Seok-Hee</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-12-20T12:12:58Z</dc:date>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:title>Automorphism Faithfulness Metrics for Symmetric Graph Drawings</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Eades, Peter</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-12-20T12:12:58Z</dcterms:available>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59573/1/Meidiana_2-nbs8sjarj8fu1.pdf"/>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dcterms:abstract xml:lang="eng">In this paper, we present new quality metrics for symmetric graph drawing based on group theory. Roughly speaking, the new metrics are faithfulness metrics, i.e., they measure how faithfully a drawing of a graph displays the ground truth (i.e., geometric automorphisms) of the graph as symmetries. More specifically, we introduce two types of automorphism faithfulness metrics for displaying: (1) a single geometric automorphism as a symmetry (axial or rotational), and (2) a group of geometric automorphisms (cyclic or dihedral). We present algorithms to compute the automorphism faithfulness metrics in O(n log n) time. Moreover, we also present efficient algorithms to detect exact symmetries in a graph drawing. We then validate our automorphism faithfulness metrics using deformation experiments. Finally, we use the metrics to evaluate existing graph drawing algorithms to compare how faithfully they display geometric automorphisms of a graph as symmetries.</dcterms:abstract>
    <dc:contributor>Meidiana, Amyra</dc:contributor>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59573/1/Meidiana_2-nbs8sjarj8fu1.pdf"/>
    <dcterms:issued>2022</dcterms:issued>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen