Publikation:

Singular limits in the Cauchy problem for the damped extensible beam equation

Lade...
Vorschaubild

Dateien

Racke_0-264314.pdf
Racke_0-264314.pdfGröße: 312.23 KBDownloads: 201

Datum

2014

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Working Paper/Technical Report
Publikationsstatus
Published

Erschienen in

Zusammenfassung

We study the Cauchy problem of the Ball model for an extensible beam: [\rho \partial_t^2 u + \delta \partial_t u + \kappa \partial_x^4 u + \eta \partial_t \partial_x^4 u = \left(\alpha + \beta \int_{\R} |\partial_x u|^2 dx + \gamma \eta \int_{\R} \partial_t \partial_x u \partial_x u dx \right) \partial_x^2 u.]. The aim of this paper is to investigate singular limits as $\rho \to 0$ for this problem. In the authors' previous paper \cite{ra-yo} decay estimates of solutions $u_{\rho}$ to the equation in the case $\rho>0$ were shown. With the help of the decay estimates we describe the singular limit in the sense of the following uniform (in time) estimate: [| u_{\rho} - u_{0} |_{L^{\infty}([0,\infty); H^2(\R))} \leq C \rho.]

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690RACKE, Reinhard, Shuji YOSHIKAWA, 2014. Singular limits in the Cauchy problem for the damped extensible beam equation
BibTex
@techreport{Racke2014Singu-30729,
  year={2014},
  series={Konstanzer Schriften in Mathematik},
  title={Singular limits in the Cauchy problem for the damped extensible beam equation},
  number={334},
  author={Racke, Reinhard and Yoshikawa, Shuji}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30729">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/30729/5/Racke_0-264314.pdf"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/30729/5/Racke_0-264314.pdf"/>
    <dc:contributor>Racke, Reinhard</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Racke, Reinhard</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-04-14T08:08:06Z</dcterms:available>
    <dc:creator>Yoshikawa, Shuji</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:title>Singular limits in the Cauchy problem for the damped extensible beam equation</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:language>eng</dc:language>
    <dcterms:issued>2014</dcterms:issued>
    <dc:contributor>Yoshikawa, Shuji</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-04-14T08:08:06Z</dc:date>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30729"/>
    <dcterms:abstract xml:lang="eng">We study the Cauchy problem of the Ball model for an extensible beam: \[\rho \partial_t^2 u + \delta \partial_t u + \kappa \partial_x^4 u + \eta \partial_t \partial_x^4 u = \left(\alpha + \beta \int_{\R} |\partial_x u|^2 dx + \gamma \eta \int_{\R} \partial_t \partial_x u \partial_x u dx \right) \partial_x^2 u.\]. The aim of this paper is to investigate singular limits as $\rho \to 0$ for this problem. In the authors' previous paper \cite{ra-yo} decay estimates of solutions $u_{\rho}$ to the equation in the case $\rho&gt;0$ were shown. With the help of the decay estimates we describe the singular limit in the sense of the following uniform (in time) estimate: \[\| u_{\rho} - u_{0} \|_{L^{\infty}([0,\infty); H^2(\R))} \leq C \rho.\]</dcterms:abstract>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen